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Abstract

As mobile computing devices become more and more
popular, mobile databases have started gaining popularity.
An important feature of these database systemsistheir abil-
ity to allow optimistic replication of data by permitting dis-
connected mobile devices to performlocal updateson repli-
cated data. Thefundamental probleminthisapproachisthe
reconciliation problem, i.e. the problemof serializing poten-
tially conflicting updates performed by local transactionson
disconnected clients on all copies of the database. In this
paper weintroduce a new algorithmthat combines multiver-
sion concurrency control schemes on a server with recon-
ciliation of updates from disconnected clients. The scheme
generalizes to multiversion systems, the single version opti-
mistic method of reconciliation, inwhich client transactions
are allowed to commit on the server iff data items in their
read sets are not updated on the server after replication.

1. Introduction

M obiledatabases are gaining popularity and arelikely to
do so wdll into the future as portabl e devices become more
and more popular and common. One key feature of these
database systemsistheir ability to deal with disconnection.
Disconnection refersto the conditionwhen a mobile system
is unable to communicate with some or dl of its peers. In
such a situation the mobile no longer has access to shared
data To dea with the disconnection problem, optimistic
replication approaches have become exceedingly common.
In such approaches, the mobile unit is allowed to locally
replicate shared data and to operate on this datawhile it is
disconnected. The local updates can be propagated to the
rest of the system on reconnection. However, sincethelocal
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updatespotentially conflict with other updatesin the system,
schemes to detect and resolve such conflicts are required.
This paper focuses on one such scheme.

The architecture we consider isan extended client server
architecture. The primary copies of al dataitems are stored
on the server. All transactions must commit on the server
to be “globally” committed. The clients are alowed to |o-
cally replicate asubset of a database state (as defined in sec-
tion 2). Local transactions on the client can operate on this
local replica and perform updates. As long as the client is
connected to the server, each local transaction is automat-
ically serialized on the server before it is alowed to com-
mit. However, if the client is disconnected and cannot ac-
cess the server, loca transactions are dlowed to “locally”
commit in the sense that their updates are made available
to other locd transactions after they have localy commit-
ted. The client, on reconnection, propagates al local trans-
actions to the server for globally serializability testing. A
transaction that can’t be serialized due to irresolvable con-
flicts must be aborted. If seriadlization succeeds, the trans-
action is globally committed and its updates applied to the
shared database. We refer to the process of testing, conflict
resolution and serialization as reconciliation.

Most of thecurrent approachesto thereconciliation prob-
lem assume a lot of specialized knowledge on the part of
the application and even the user. Furthermore, all such ap-
proaches are highly tied to specific applicationsand are dif-
ficult to generdize. In this paper, we attempt to strike a
bal ance between requiring highly specialized knowledgeon
part of the applications and providing generic consistency
management. The cornerstone of our approach isusing mul-
tiversioning. This allows usto reconcile transactionsin the
“past”, that ison versions of data older than the current ver-
sion, improving the probability of reconciliation. Multiver-
sioning aso allows us to use snapshot isolation (see Beren-
son et. a. in [4]), which provides consistency that is amost
asstrongas ANSI read committed, but which iswesker than
full serializability. Snapshot isolation allowsamultiversion
transaction to commit as long as the dataitems in itswrite



set were not overwritten after these dataitems were read by
thistransaction (i.e. therewas no intervening write on these
dataitems after the transaction read them). Using snapshot
isolation additionally improves the probability of reconcil-
iation, without significant loss of consistency. We present
a reconciliation scheme which integrates incoming client
transactions and provides snapshot isolation for such trans-
actions. The server must provide at least snapshot isolation
to server transactions. Finally, wevalidate our algorithmus-
ing the phenomena and the anomalies presented by Beren-
sonet. d.in[4]. Theschemeisageneraization of thesingle
version optimistic concurrency control (see [14]), where a
client transaction is deemed globally serializableiff noitem
initsread set was written on the server after the client down-
loaded itslocal replica.

1.1. Benefits of Multiversioning

To see how multiversioning helps in the reconcilia
tion/reintegration process, consider the following example
history (for the single version system, we ignore the sub-
scriptson z and y):

Server: wo[.ro} = 1,wo[yo} = 1,00,7’1[%0} =
l,Tl[yo} = 1,11}1[.%1} = 2,01
Client: downloaded z = 1,y = 1: ryz] =

1,71/[y] = 1,wy [y] = 3, cq/, reconcile Ty,

Let us assume that no conflict resolution protocols have
been defined. In asingleversion system, at thetime of rein-
tegration, the database has the following snapshot: {z =
2,y = 1}. Since this snapshot is not consistent with the
read snapshot of T/, whichis{z = 1,y = 1}, T1» must
be rgjected by the server to maintain consistency.

Now let us consider a multiversion system. In this case
there are two distinct snapshots in the database: {zo =
1,yo = 1} and {z1 = 2,yo = 1}. Thefirst snapshot isin
the past and is consistent with the read set of Ty.. Thus, T3
can now be potentially serialized on thissnapshot. A sample
resulting history isas follows:

Server: wo[xo} = 1,wo[yo = 1,00,7’1/ [.To}

Lirifyo] = Lirifzo] = Lirifyo] = 1, wirfyi]
37 clf,wl[xl} = 2,01

Notethat thishistory isnot serializable, but snapshot iso-
lation holds. Thus, by using snapshot isolation, rather than
full seridizability, we can improve the probability of recon-
ciliation, even when conflict resol ution protocol sare not de-
fined. Notethat the reason thisworksfor our exampleisthat
transactionT; ontheserver doesnot writey. If it does, snap-
shot isolation would no longer hold.

1.2. Related work

Recently lot of research has been directed at optimistic
replication schemes and at mobile databases and reconcilia

tion. Some early work can befoundin[6, 3, 10, 11, 12]. Re-
cently, Gray et. d. in [8] present asystem architecture and a
replication model for mobile databases. The database here
is a collection of replicated objects with primary copies at
certain sitesknown as object masters. The model usesatwo
tier replication scheme, with onetier on the mobile (discon-
nected) nodes and the other on the base (connected) nodes.
All transactionsoperating on objectson thefirst tier are con-
sidered tentative and must be reapplied to the object master
and the second tier, using aset acceptance criteria, whenever
the mobile reconnects.

In BAYOU [7], the replicas are local copies of an en-
tire data repository. Bayou requires applications to specify
both the conflict detection and resol ution functionswith the
updates. Updates are reconciled whenever two data reposi-
tories get connected. Reconciliation takes place by rolling
back dl updates made by both connecting servers and re-
playing both sets of updates together (including conflict de-
tection and resolution functions) in timestamp order. Note
that the data repository here is not a database.

An approach to the reconciliation problem that relies on
application semanticsisfragmentable objects[16]. Herethe
designer can exploit application semantics to split large and
complex objects into smaller fragments. The mobile can
then independently operate on an object partition consisting
on one or more object fragments with certain constraints.
On receiving a request from the mobile for caching an ob-
ject, the server attemptsto split the object into fragments so
that it can satisfy the request with an object partition. The
mobile can then operate on this partition in disconnected
mode.

Note that most of the above work does not focus on the
conflict resolution problem. On the other hand, approaches
like BAYOU and fragmentable objects which do focus on
reconciliation require specidized knowledge of the system
for al transactions and special concurrency control mod-
els. We attempt to reach a ba ance between these solutions
by creating a system that provides consi stency management
and that can use but does not need specialized knowledgeto
provide conflict resolution.

1.3. Organization of the paper

We have organi zed the remai nder of thispaper asfollows:
section 2 describes our model of the database; section 3 de-
scribes the multiversion reconciliation agorithm and dis-
Ccusses consistency properties; section 4 explores some prac-
tical concernswith theimplementation of the algorithmand
section 5 briefly listsour conclusions.



2. Themodel

We model the database as a collection of dataitems (e.g.
tuples or objects) dong withtheir versions. The dataitems
are drawn from a universe X. The database at any given
instant exists in a particular state.  This state reflects the
updates due to all committed transactions upto this instant.
In practice, the database would also consist of data writ-
ten by active transactions. However, we ignore this for the
purposes of our algorithm, which only attemptsto seriaize
transactions against committed versions. Each (globally)
committed transaction that operated on the datais provided
a unigue nonnegative integral commit timestamp on (glob-
ally) committing on the server, which can be different from
apossibly non-unique start timestamp, if such astart times-
tamp is provided. The timestampsreflect the order in which
the transactions commit. The version number of a version
of a data item is the commit timestamp of the transaction
that wrote it. Note that as each transaction commits on the
server (which meansit globally commits), the database state
D “expands’ to includethe updates performed by thetrans-
action. Since this aso includes reconciling client transac-
tions, D progressively changes through the entire reconcili-
ation process asindividual client transactionsglobally com-
mit.

Definition 1 (Database State and Value Function)

The state of the database on the server at any instant of time
consists of a set of elements D ¢ X x Z™, a collection of a
finite number of versions of data items drawn from X and a
vaue : D — |J,cx domain(z) function that maps data items
and versionsto the actual values of the data items. The domain of
the value function at any instant of time isthe set D at that instant
of time, and the co-domain is the union of the domains of all the
dataitemsin X.

Our characterization of snapshotsisusing snapshot func-
tions. There are two kinds of snapshots: version snapshots
consisting of data items and their versions (and hence im-
plicitly their values using the value function), and value
snapshots consisting purely of the dataitems and their val-
ues. Note that snapshots seen on a disconnected client
may have no correspondence to snapshots on the server and
hence a va ue snapshot from aclient may not correspond to
any version snapshot on the server. Thisis because transac-
tions executing on the client are completely independent of
transactions executing on the server aslong asthe client is
disconnected. Hence the need for two separate definitions.

Definition 2 (Version Snapshot Function) A version snap-
shot function S : Z* — D is a function that maps a nonnega-
tive integral timestamp into a snapshot of the database. For each
timestamp valueit yields a collection of versionsof data itemswith
the following properties:

1. S(v) C D. Every snapshot is a subset of the database state.

2. (z,v) € D = (x,v) € S(v). For any given snapshot
S(v), if the data item was written by transaction with times-
tamp v, then version v of the data itemisin .S(v).

3. {z,v") € S(v) = v > v'. Nodataitemin S(v) can have
version number greater than v.

4. Yo, v' : (z,0') € S() A (z,v") € S(v) = v =",
Only one version of a data item can be presentin a snapshot.

5 W', 0" 10" > 0" Az, 0’y € S(v) Ay, v") € S(v) =
W e Z: (y,v"") € D =" <" vy > A
snapshot S(v) has the latest versions of the data items that
areless than or equal to v. Note that if a data item = was
introduced into the databaseby a transaction with timestamp
greater than v (i.e. = wasinserted into the database by the
transaction), then z can not bein S(v).

From acomputational perspective, S(v) isdefined asfol-
lows (lub is the least upper bound and is equivalent here
to the maximum function): S(v) = {(z,v’) | (z,v') €
D AV = lub{v"|{z,v") € DAV < v}}. S(v)isin
fact the snapshot of the database that a read-only transac-
tion with (start) timestamp v would see. Additionaly, we
also define value snapshots SV, which consists data items
along with their values (instead of their versions). We use
the superscript v to distinguishval ue snapshotsfromversion
snapshots. Note that the val ue snapshots need not have cor-
responding version snapshots (especialy if the value snap-
shots originate from a disconnected client). However, cor-
responding to every version snapshot S(v) there exists a
vaue snapshot S¥(v) = {(z,9) | (z,v") € S(w) Ai =
value(z, v')}. In order to simplify our exposition, we also
extend the value function to version snapshots as follows:
value(S) = {(z,4) | (x,v") € S Ai = value(z,v’)}. Note
that only one value for each data item can be present in the
value snapshot.

Asdefined, asnapshot S(v) must containall dataitems:,
suchthat (x,v") € DAV < v. However, we might beinter-
ested in subsets of such snapshots. Therefore, we adso alow
partial snapshots where this requirement isrelaxed. Instead
of requiring al dataitems in the data base to be tested, we
can restrict our attention to any fixed subset of X. Thisis
useful incharacterizing the readsets and writesets of transac-
tionswhich contain subsets of dataitemsfrom the database.

The concurrency control model on the server isassumed
to be modular as described by Agrawal and Senguptain[2]
and Bernstein and Goodman in [5]. Here read only (query)
transactions run in anonbl ocking fashion using old versions
of the data, while read write (update) transactions always
operate on the latest snapshot in existence when they start
executing. Any optimistic multiversion concurrency con-
trol protocol that guarantees at least snapshot isolation can
be used for the update transactions on the server. Requir-
ing that the protocol be optimistic simplifies our description
of the agorithm. With alittle care, however, our agorithm
can easily be re-engineered to work with pessimistic mul-



tiversion concurrency control protocols. In that latter case
we have to be careful while serializing client transactions
on snapshotsthat are in “use” by active transactions on the
server.

The mobile clients can use any concurrency control pro-
tocol (multiversion or otherwise) as long as the read and
write sets (and the values read and written) of al locally
committed client transactions are available during reconcil-
iation.

Definition 3 (Read, Write and Read-Write Sets) For
each transaction 7' we define three partial value snapshots: the
RSETY(T), consisting of all data items which were read but
not written by T'; the RWSET"(T") consisting of all data items
read and then written by the transaction; and the WSET"(T),
consisting of all the data items that are written by 7' before they
areread (i.e. 7' blind writes all the data items in this set).! We
also define READSETY(T') = RSET?(T) U RWSETY(T) and
WRITESET?(T) = RWSET(T)) U WSET(T).

To deal with conflictswe require conflict resolutionfunc-
tions. For each client transaction T, the client can op-
tionally define a conflict resolution function CRz,. This
function can be provided by the client whenever it seeks
reconciliation of a transaction. If this function is not pro-
vided by the client the server uses a default. CRy, takes
as input three vaue snapshots. the readset consisting of
data items and values read by T, the writeset and values
generated by T, and a new values snapshot against which
T, needs to be serialized. The CRy, function returns a
new writeset for T, i.e. avaue snapshot of the dataitems
along with new values, after conflicts have been resolved.
Thus, CRr (READSETY(T.), WRITESET"(T,),S?,) =
NEWWRITESET", wherever the function is defined. Note
that NEWWRITESET" only consistsof dataitemsthat would
actually be written if conflict resolution took place for T,
against S7, . If the conflict resolution function is defined,
the client must also define a cost function Cr, that takesthe
same inputsasthe conflict resol utionfunctionand returnsan
integral cost value that indicates the cost of resolving con-
flictsfor that set of inputs. An example cost functionis:
Cr.(READSETY (T, ), WRITESETY (T%), S},)

= |READSETY(T,) — SREADSETY(T)|
where SREADSETY(T,) = {(z,i) | (z,i) € S, AT
(x,1") € READSETY(T.)}. Here, the cost of resolving against
asnapshot is equa to the number of dataitemswhich have
different values in the snapshot and in the readset of T.. If
the client does not specify these functions, the server uses
defaults defined as follows:

1The concept of a WSET?comes largely from the work by Agrawal
and Krishnamurthy [1], which adapts multiversion concurrency control to
write-only transactions.

Definition 4 (Default Cost Function)
Cr, (READSETY (T), WRITESET? (T%), S,)
:{ 0 if READSETY(T:) C SY,
o

otherwise
Definition 5 (Default Conflict Resolution Function)
CRy, (READSET?(T), WRITESET¥(T%), S2,)
_ [ WRITESET¥(T.) ifREADSETY(T:) C S¥,
| undefined otherwise

These functions simply allow seridization of a transac-
tion iff the readset seen by the transaction from the snap-
shot it read from and the snapshot S}, against which it is
being serialized areidentical. The cost functionwill usualy
be infinity whenever the new input snapshot S}, is empty.
This, however, would not be the case for write-only trans-
actions[1]. These default functions are used by the system
whenever no explicit conflict resolution is requested by the
client. Note that our choice of inputsfor the conflict reso-
[ution function closely paralels the framework defined by
BAY OU. In essence, this function can be thought of asre-

executing the client transaction 7. on the new snapshot S,

wmn*

3. The multiversion reconciliation algorithm

We now describe the multiversion reconciliation algo-
rithm. The basic idea is to consider each client transac-
tionin turn and compute a snapshot which is consistent and
leads to least cost reconciliation. The snapshots are com-
puted by considering each timestamp that could be provided
totheclienttransactioninincreasing order. Furthermore, af -
ter conflict resol utionthe resulting writeset should not affect
any snapshot already present inthedatabase. Thisisdoneby
ensuring that all writesin the new writeset are always seri-
alized after the latest version of the dataitem or just before
ablind write to the dataitem. A blind writeto a dataitem
occurs when a transaction writes the data item without first
reading it. The agorithm proceeds by progressively com-
puting snapshots and attempting to serialize client transac-
tions against these snapshots. To achieve these two goals
(i.e. least cost reconciliation and snapshot isolation), we de-
fine two snapshot functions, the backward or the normal
snapshot function S! (v) and theforward or reverse snapshot
function ST (v). The domain of these functionsis the inte-
gral domain Z* extended by a specia element A toforma
new domain Z# with the following properties (note that we
could instead work with rea timestamps):

LYieZt:i—-A<i
VieZ”ri—A<i

2 VicZt ij<i=j<i—-A
VieZt:j<i=j<i-A

3.Vi€ZANK e LT i <i— 5y



Note that we assume that £ = A. We aso extend the
set of alowabl e timestamps and versions to the domain Z4.
The two snapshot functions can now be defined as follows
(glbisthegreatest lower bound and isequivalent to the min-
imum function in the integral domain):

o SHE) = {{z,v') | (x,v) € DAV = lub{v"|(z,v") €
D A" < k}}

o ST(k) = {{z,v) | (z,v') € DAV = glb{v" | (z,v") €
DAV >k}

The algorithm uses the normal snapshot to determine the
input snapshot of the transaction. The reverse snapshot is
used to determine whether the transaction’s updates can be
serialized against thenormal snapshot. Insomesense ST (k)
can be considered areverse time snapshot, i.e. a snapshot of
the database, if time were reversed. Also note that S' (k)
and S(k) areidentical in the integral domain. We also de-
fineaversion set V that consistsof al versionsin useinthe
database when the client reconcilesits loca replica. Thus,
V = {v|3x : (x,v) € D}. Notethat V C Z*.

The basic building block of our agorithmisaprocedure
to reconcile the updates of asingle client transaction. This
procedure isillustrated in algorithm 1. We assume that this
algorithm executes atomically?. (We show how to relax the
atomicity requirement in section 4.2.) The agorithm can
then be used as a subroutine to reconcile the updates of all
reconciling client transactions on the server asillustrated in
Algorithm 2. Note that all snapshot and read/writeset com-
putations are performed with reference to the current trans-
action being reconciled, i.e. T, and the current state of the
database D. Inafashion analogousto Gray et. al.’smodel in
[8], the client may specify the C'r,, and the CRy, functions
for each client transaction T...

There are a few things to note about the algorithm. As
long asthe conflict resolution and cost functions cover most
cases, T, would rarely be aborted. This is because in our
model ST(1 + lub(V) — %) isaways an empty set for any
integral <. Thus, the conditionsin the inner for loop would
always be satisfied for this snapshot. This situation corre-
sponds to serializing the transaction against the current (lat-
est) snapshot of committed versions. The current snapshot
is defined to be St (c0) = S (1 + lub(V)). Also note that
thevariableiter is static and itsvalueis retained across in-
vocations of the algorithm. It allows the agorithm to find
“gaps’ in the timestamp sequence.

The serialization operation at line 30 corresponds to in-
troducing elements in NEWWRITESETY into the database
with timestamp opt — ”Aer. Thus, the operation replaces D
with

2Actually, read-only transactions can continue executing. This is be-
cause any snapshot on the server is guaranteed to be “undisturbed” dueto
the monotonicity properties that must be guaranteed by the algorithm for
any set of snapshotsof the current database state.

Algorithm 1 Multiversion Reconciliation Algorithm

Ensure: // Inputs: Database state D, Transaction T¢, Functions CRr,,
Cr,

Ensure: opt = —1

Ensure: cost = oo

Ensure: static iter = 1

1: /I Main Loop:

2: for allv € V.U {1 4 lub(V')} inincreasing order do

3 Sl=glw--2

iter)

4. ST =8N(v— 2

5. // Now find if this snapshot is best cost and use-able

6: if Cr, (READSETY(T.), WRITESETY(T¢),value(St)) < cost
then

7. NEVWWRITESET" =

CRr, (READSETY(T.), WRITESET" (T¢), value(S1))
8: /I NEWWRITESET should not conflict with any existing snapshot
inD
9: /I Inner Loop:
10: for all {x, i) € NEWWRITESET? do

11: Il Isthiselement € ST? If yeswasit produced by a blind write?

12: if 30" : (x,v') € ST then

13: Let T be the transaction with timestamp v’

14: if 3¢ :< 7 > WSETY(T') then

15: I {z,v") isthe result of a blind write

16: continue Inner For Loop

17: else// This snapshot cannot be used, continue with the main
loop

18: continue Main Loop

19: end if

20: end if

21: end for

22: cost = O, (READSETY(T), WRITESET? (T), value(S*))

23 opt =v

24:  endif

25: end for

26: if cost = oo then

27: |/ unableto reconcile updates

28.  abort T,

29: else// Reconciliation successful

30:  serialize T, with timestamp opt —
31 dter =idter +1

32: end if

A

iter

Algorithm 2 The Reintegration Algorithm

/I Called for each reconciling client C
/I Note that the database state D changesfor every invocation of Algo-
rithm1
for all TransactionsT. on C' do
/I Thetransactionswould usually be scannedin the order in which they
committed on the client, but thisis not a requirement of the algorithm
per se.
Begin-Atomic
Invoke Algorithm 1 with D, T, CRr, and Cr,
End-Atomic
end for




DU {(z,opt — 2} | Ji : (x,i) € NEWWRITESET"}
and value with
valueU {(z, opt — ;2-) — i | (z,i) € NEWWRITESET"}
(we usethe — instead of an ordered triplefor clarity). Also
note that the value of iter is remembered between subse-
guent invocations on agorithm 1.

Even if aclient transaction T, is aborted, client transac-
tionsthat read dirty data from it need not be. Consider the
following example history on a single dataitem database:

Server: UJQ[.IQ] = 1, CQ,Tl[JjQ] = 1,11]1[.%1] =
2, C1, 7“2[.%1] = 2, UJQ[.IQ] = 3, Co

Client: downloaded z:g = 1: ry/[z] = 1, wy/[z] =
3, c1r, rorfx] = 3, cor

Note that, in this case, the client is not following a mul-
tiversion scheme. In the absence of explicit conflict res-
olution, transaction T3, on the client must be rejected on
reintegration. This is because the 7}, can only be seria-
ized before T} on the server but the NEWWRITESET" that
the default (trivial) conflict resolution handler produces is
{(z, 3)}. However, the snapshot ST (1 — A) is {(x, 1)} in
which (z, 1) isnot produced by a blind write?.

Evenif T3, isaborted, however, T,, can beserialized with
timestamp 3 (actually 3 — A) giving aserial history (we do
not assume any intertransactional dependencies):

Server: UJQ[.IQ] = 1,CQ,T1[$Q] = 1,11]1[.%1] =
2, 61,7”2[$1] = 2,w2[x2] =3, 02,7“2'[$3] =3, co

Note that thisis because T5/ sees the same value snapshot
ontheserver that it sees ontheclient. Thus, cascaded aborts
would normally not be forced on the client.

3.1. The phenomena and the anomalies

We now validate algorithm 1 using the phenomena and
anomalies as specified by Berenson et. a. in[4]. Wedo this
to show that snapshot isolation is indeed provided by the
overall system. Webriefly recapitul atetherel evant phenom-
enaand anomalies analyzed in that paper in terms of histo-
ries allowed by the phenomenon or the anomaly:

e PhenomenaPO (Dirty Write)
wifz]...walz]...(c1 Var)

e PhenomenaP1 (Dirty Read)
wifz]...r2[x]...(c1V a1)

e Phenomena P2 (Fuzzy Read)
rifz]...wez]...(c1V a1)

e PhenomenaP3 (Phantom)
ri[P]...wz2ly: P(y)]...(c1Var)

e Anomaly A3 (Phantom)
ri[P]...w2ly: P(y)]...ca...71[P]...c1

3Note that NEWWRITESETVis a value snapshot while ST (1 — A) is
aversion snapshot. In {(x,3)} the 3 isthevalueof z, butin {(z,1)},1
refersto the version of «.

e PhenomenaP4 (Lost Update)
rifz]...wez]...wifx]...(c1 Var)
e AnomaliesA5 (Data |Item Constraint Violation)

— Anomaly A5A (Read Skew)

rifz].. walx]. . waly]...c2. . iyl ... (c1 Var)
— Anomaly A5B (Write Skew)
rifx].. . r2ly] . wify] .. welz] ... (1 Ac2)

Here the o; v o; implies one or both of o; and o; occur in
any order, while o; A o; implies both of o; and o; occur in
any order.

In order to provide snapshot isolation the system must
disalow histories with phenomena and anomalies PO, P1,
P3, A3, ASA and P4. Since we assume that the system
inherently guarantees at least snapshot isolation for server
transactions, we need to concentrate only on reconciling
client transactions.

Since we only operate on committed data on the server
it is obvious that the reconciliation algorithm does not a-
low phenomenaP1 or P2. Interestingly enough inthe form
in which we have presented the agorithm, it does alow
anomaly A3. To see this consider a client transaction that
used a predicate P to read data on the client. Suppose this
read produces 3 dataitems x, y and z. Thus, in effect the
readset of thetransactionis{z, y, z}. Furthermore, suppose
that no conflict resolution is specified and the algorithm de-
cides to seridize the transaction against a snapshot which
hasidentical values of x, y and z, but also has an additional
item a which aso satisfies P. This item would never get
reflected in the client transaction’s readset, whichis a clear
violation of A3 and hence P3. (This is because reconcili-
ation can be considered as a second instance of r[P]. Fur-
thermore, if atransaction is seriaized against a snapshot, it
impliesthat thetransaction should have executed asif it had
been reading data from the snapshot in the first place) A
solutionto this problem is to provide read predicates rather
than readsets to the algorithm. Another possibility is for
the client to build the predicates into the conflict resolution
functions.

Since the client transaction always gets reconciled
against a snapshot of the database, anomay A5A cannot
occur. Note that as long as a client transaction reads data
(or rather appears to read data) from a single snapshot, it
can not be reading data from an intermediate update. Also
note that uncommitted updates do not appear as a part of
the database's state. This also precludes phenomenon PO
sincethe client transaction will only “overwrite’ committed
writes (i.e. its writes will be serialized after committed
writes).

In order todisalow P4, client updates must neither over-
write nor be overwritten by committed updates. Another
way of looking at thisrequirement, isthat the set of consis-
tent snapshots on the server must be monotonic, i.e. arec-
onciling transaction must add snapshots to this set, but may



not delete any other snapshot. Furthermore, every commit-
ting client transaction must introduce exactly one additional
snapshot in the database. Notethat in our case the snapshots
aretied to versions (see the definition of S(v)).

To avoid P4, new writesto a dataitem can be serialized
either beforeablindwrite, where no read to thedataitem has
taken place; or after thelast writeto the dataitemin the cur-
rent database state (i.e. thecurrent or latest snapshot). Since
our algorithm always seriaizes new writeseither against the
latest (current) snapshot or before a blind write, P4 can not
occur. Theformer conditionis precisely the reason why we
need a separate WSET" to pinpoint the blind writes.

The system obvioudy does not provide seridizability
sinceit allows A3. It also allows A5B. To see this consider
the following example:

Server:wo[xo] = 1,wo[yo] = 170077’1[%0] =
1L,rilyo] = Lwi[y1] = 2,1
Client:downloaded z0 = 1l,y0 = 1. ryfz] =

1,7’1/ [y] = 1,11}1/[.%] = 3, Cyr

On reconciliation of the client transaction 1’ the algo-
rithm yields the following history:

Serveriwo[zo] = l,wolyo] = 1,co,71/[7]
Lrily] = 1,rize] = 1,7m1[ye] = 1, wy[z]
37 01'7w1[91] = 27 C1

Notethat the snapshot S (1 — A) = {(z,0), (y,0)} and
valug(St(1 — A)) = {(z,1), (y, 1)} whichis identical to
the value snapshot seen by client transaction 1’ giving acost
of 0. Furthermore, ST(1 — A) = {(y,2)}. For theclient
transaction 1/, NEWWRITESET® = WRITESET(T}/) =
{{z, 3)} which does not “conflict” (i.e. have common data
items) with ST(1 — A). Thus, transaction 1’ is serialized
withtimestamp 1 — A, which means it is seriaized after the
reads of transaction 1, but before itswrite,

Itis easy to see that thishistory satisfies A5B. Thus, we
concludethat our a gorithm provides aweakened form snap-
shot isolation, i.e. snapshot isolation with phenomenon A3.

3.2. Providing serializability

As mentioned in the last section algorithm 1 does not
guarantee serializability. We do not believe that thiswould
be a problem for most systems. However, there might be
some systems where serializability is desired or necessary.
In this section, we show how to strengthen the algorithm to
provide seriaizability. Note that to guarantee seriaizability
on thesystem asawholetheserver must haveamultiversion
optimisticconcurrency control model that guarantees serial-
izability for server transactions.

The key problems with providing seridizability are
avoiding phenomenon P3 and A5B. As mentioned earlier

both A3 and P3 can both be avoided by using read predi-
catesto extract theread set from the snapshot, rather than us-
ing an absoluteread set. The extracted set can then betested
against the actual read set of the transaction. The definition
of Cr, and CRy, functionsmust be extended to allow for the
read predicates of the transaction. The default conflict reso-
[ution and cost functionsthen become
Cr.(READSETY (T, ), WRITESETY (T%), S%.)

0 if READSETY(T,) = Pr,(value(Sy)))
{ 00 otherwise

and
CRr, (READSETY (T ), WRITESETY(T¢.), SY.)
WRITESETY(T,.) if READSETY(T)
= = Pr,(value(s},))
undefined otherwise

where Pr,_ is the read predicate of transaction 7T, and
P(S) extracts from the set S a set of al elementse € S
which satisfy P. Thus, P(S) = {e|e € S A P(e)}.

Webdlievethat handling P3 isaprimarily thefunction of
conflict resolution routines. Whenever a client wants to ex-
plicitly prevent P3, it simply needs to modify the functions
it transmits with the client transactions. Thus, normally the
server should not even care about read predicates.

To eliminate A5B, we note that the only reason histories
satisfying A5B are allowed by agorithm 1 is that only the
elements in the writeset of client transactions are inspected
for conflictsagainst thereverse snapshot ST. Instead, if both
theread and writesets are inspected, then the resulting histo-
riesdo not allow A5B. Thus, the for loopin line 10 of algo-
rithm 1 must be changed to read:

for all (x,i) € NEWWRITESET” U READSET"(T.) do

end for

Thismodification can increase the collision cross section
of the client transaction on any snapshot. Thisis dueto the
fact that there are additiona elementstotestinline14 of al-
gorithm 1, which means that there are additional chances of
failure. Note that though most client transactions may have
small single element writesets, they can still have relatively
larger readsets.

4. Some practical consider ations
4.1 Timestamp Maintenance

Algorithm 1 requires that its “input” transaction 7. be
serialized with some timestamp opt — 2. This implies
that a new timestamp that is less than opt but greater than
lub{v |v € V A v < opt} must be given to the reconciling
client transaction. In practice, though, we need to haveinte-
gral values for timestamps. The most direct but expensive

solution to this problem is to “renumber” the timestamps



each time a client transaction commits. An aternativeisto
use commit lists as described in [9]. Instead of storing ver-
sionnumberswith dataitems, wewouldstoretransactionids
and version numbers would correspond to the transaction’s
index in the commit list. Whenever a new transaction com-
mits with “timestamp” opt — £ itisinserted into the com-
mit list just before the transaction with index opt. Another
way of achieving integral timestampsisto leave “gaps’ in
the sequence of timestamps provided by the server, e.g. by
splitting the timestamp into a most significant for commit-
ting server transactions and aleast significant part for com-
mitting client transactions.

4.2. Increasing parallelism

The algorithm as described in the section 3 has one prob-
lem. It requiresthat the reconciliation of each client transac-
tion be an atomic operation. Unfortunately, such reconcilia-
tionislikely to be atime consuming process since multiple
snapshots must be computed and tested. Thus, the system
throughput as a whole is likely to suffer during reconcili-
ation due to loss of parallelism. We present a preliminary
technique to improve paralelism in the system.

We can do this by exploiting one key property of theal -
gorithm and our model of the database. The active transac-
tionsin our model always commit against the current snap-
shot. (Note that though these transactions might be read-
ing data from an older snapshot, they must aways be se-
rialized after the current snapshot, which means that they
must be serialized after the transaction that wrote the cur-
rent snapshot.) Furthermore, the algorithm always scansthe
V inincreasing order. Thus, atreelocking protocol with ac-
cessintentionlocks on the elements of V' can be used to im-
prove paralelismin the reconciliation process. As long as
the last element of V' is not locked, server transactions can
continue executing, since in our model, they must always
commit against the latest snapshot (i.e. after the last com-
mitted transaction).

5. Conclusions

We have presented an algorithm that provides multiver-
sion reconciliation. The algorithmis uniquein that conflict
resolution and detection are integrated with global serializ-
ability testing. We have also presented some practical con-
siderations for implementation of the algorithm.

A key concept in our algorithmisthat conflict resolution
and detection are decoupled. The responsibility for detect-
ing conflictslieswith the server. Thisisdone by performing
serializability testing on locally committed transactions on
reconciling clients. On the other hand, conflict resolutionis
the responsibility of the client. The client manages this by
providing the conflict resolutionand cost functionsfor each

transaction. Inthe absence of these functions, the server as-
sumes adefault, which guarantees snapshot i solationto “un-
modified” client transactions.
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