
Multiversion Reconciliation for Mobile Databases∗

Shirish Hemant Phatak
Department of Computer Science

Rutgers University
New Brunswick, NJ 08903

e-mail:phatak@cs.rutgers.edu

B. R. Badrinath
Department of Computer Science

Rutgers University
New Brunswick, NJ 08903

e-mail:badri@cs.rutgers.edu

Abstract

As mobile computing devices become more and more
popular, mobile databases have started gaining popularity.
An important feature of these database systems is their abil-
ity to allow optimistic replication of data by permitting dis-
connected mobile devices to perform local updates on repli-
cated data. The fundamental problem in this approach is the
reconciliation problem, i.e. the problem of serializing poten-
tially conflictingupdates performed by local transactions on
disconnected clients on all copies of the database. In this
paper we introduce a new algorithm that combines multiver-
sion concurrency control schemes on a server with recon-
ciliation of updates from disconnected clients. The scheme
generalizes to multiversion systems, the single version opti-
mistic method of reconciliation, in which client transactions
are allowed to commit on the server iff data items in their
read sets are not updated on the server after replication.

1. Introduction

Mobile databases are gaining popularity and are likely to
do so well into the future as portable devices become more
and more popular and common. One key feature of these
database systems is their ability to deal with disconnection.
Disconnection refers to the condition when a mobile system
is unable to communicate with some or all of its peers. In
such a situation the mobile no longer has access to shared
data. To deal with the disconnection problem, optimistic
replication approaches have become exceedingly common.
In such approaches, the mobile unit is allowed to locally
replicate shared data and to operate on this data while it is
disconnected. The local updates can be propagated to the
rest of the system on reconnection. However, since the local

∗This research work was supported in part by DARPA under contract
numbers DAAH04-95-1-0596 and DAAG55-97-1-0322, NSF grant num-
bers CCR 95-09620, IRIS 95-09816 and Sponsors of WINLAB.

updates potentially conflict with other updates in the system,
schemes to detect and resolve such conflicts are required.
This paper focuses on one such scheme.

The architecture we consider is an extended client server
architecture. The primary copies of all data items are stored
on the server. All transactions must commit on the server
to be “globally” committed. The clients are allowed to lo-
cally replicate a subset of a database state (as defined in sec-
tion 2). Local transactions on the client can operate on this
local replica and perform updates. As long as the client is
connected to the server, each local transaction is automat-
ically serialized on the server before it is allowed to com-
mit. However, if the client is disconnected and cannot ac-
cess the server, local transactions are allowed to “locally”
commit in the sense that their updates are made available
to other local transactions after they have locally commit-
ted. The client, on reconnection, propagates all local trans-
actions to the server for globally serializability testing. A
transaction that can’t be serialized due to irresolvable con-
flicts must be aborted. If serialization succeeds, the trans-
action is globally committed and its updates applied to the
shared database. We refer to the process of testing, conflict
resolution and serialization as reconciliation.

Most of the current approaches to the reconciliationprob-
lem assume a lot of specialized knowledge on the part of
the application and even the user. Furthermore, all such ap-
proaches are highly tied to specific applications and are dif-
ficult to generalize. In this paper, we attempt to strike a
balance between requiring highly specialized knowledge on
part of the applications and providing generic consistency
management. The cornerstone of our approach is using mul-
tiversioning. This allows us to reconcile transactions in the
“past”, that is on versions of data older than the current ver-
sion, improving the probability of reconciliation. Multiver-
sioning also allows us to use snapshot isolation (see Beren-
son et. al. in [4]), which provides consistency that is almost
as strong as ANSI read committed, but which is weaker than
full serializability. Snapshot isolation allows a multiversion
transaction to commit as long as the data items in its write

set were not overwritten after these data items were read by
this transaction (i.e. there was no intervening write on these
data items after the transaction read them). Using snapshot
isolation additionally improves the probability of reconcil-
iation, without significant loss of consistency. We present
a reconciliation scheme which integrates incoming client
transactions and provides snapshot isolation for such trans-
actions. The server must provide at least snapshot isolation
to server transactions. Finally, we validate our algorithm us-
ing the phenomena and the anomalies presented by Beren-
son et. al. in [4]. The scheme is a generalization of the single
version optimistic concurrency control (see [14]), where a
client transaction is deemed globally serializable iff no item
in its read set was written on the server after the client down-
loaded its local replica.

1.1. Benefits of Multiversioning

To see how multiversioning helps in the reconcilia-
tion/reintegration process, consider the following example
history (for the single version system, we ignore the sub-
scripts on x and y):

Server: w0[x0] = 1, w0[y0] = 1, c0, r1[x0] =
1, r1[y0] = 1, w1[x1] = 2, c1
Client: downloaded x = 1, y = 1: r1′ [x] =
1, r1′ [y] = 1, w1′ [y] = 3, c1′ , reconcile T1′

Let us assume that no conflict resolution protocols have
been defined. In a single version system, at the time of rein-
tegration, the database has the following snapshot: {x =
2, y = 1}. Since this snapshot is not consistent with the
read snapshot of T1′ , which is {x = 1, y = 1}, T1′ must
be rejected by the server to maintain consistency.

Now let us consider a multiversion system. In this case
there are two distinct snapshots in the database: {x0 =
1, y0 = 1} and {x1 = 2, y0 = 1}. The first snapshot is in
the past and is consistent with the read set of T1′ . Thus, T1′

can now be potentially serialized on this snapshot. A sample
resulting history is as follows:

Server: w0[x0] = 1, w0[y0] = 1, c0, r1′ [x0] =
1, r1′ [y0] = 1, r1[x0] = 1, r1[y0] = 1, w1′ [y

′
1] =

3, c1′ , w1[x1] = 2, c1

Note that this history is not serializable, but snapshot iso-
lation holds. Thus, by using snapshot isolation, rather than
full serializability, we can improve the probability of recon-
ciliation, even when conflict resolution protocols are not de-
fined. Note that the reason this works for our example is that
transactionT1 on the server does not writey. If it does, snap-
shot isolation would no longer hold.

1.2. Related work

Recently lot of research has been directed at optimistic
replication schemes and at mobile databases and reconcilia-

tion. Some early work can be found in [6, 3, 10, 11, 12]. Re-
cently, Gray et. al. in [8] present a system architecture and a
replication model for mobile databases. The database here
is a collection of replicated objects with primary copies at
certain sites known as object masters. The model uses a two
tier replication scheme, with one tier on the mobile (discon-
nected) nodes and the other on the base (connected) nodes.
All transactions operating on objects on the first tier are con-
sidered tentative and must be reapplied to the object master
and the second tier, using a set acceptance criteria, whenever
the mobile reconnects.

In BAYOU [7], the replicas are local copies of an en-
tire data repository. Bayou requires applications to specify
both the conflict detection and resolution functions with the
updates. Updates are reconciled whenever two data reposi-
tories get connected. Reconciliation takes place by rolling
back all updates made by both connecting servers and re-
playing both sets of updates together (including conflict de-
tection and resolution functions) in timestamp order. Note
that the data repository here is not a database.

An approach to the reconciliation problem that relies on
application semantics is fragmentable objects [16]. Here the
designer can exploit application semantics to split large and
complex objects into smaller fragments. The mobile can
then independently operate on an object partition consisting
on one or more object fragments with certain constraints.
On receiving a request from the mobile for caching an ob-
ject, the server attempts to split the object into fragments so
that it can satisfy the request with an object partition. The
mobile can then operate on this partition in disconnected
mode.

Note that most of the above work does not focus on the
conflict resolution problem. On the other hand, approaches
like BAYOU and fragmentable objects which do focus on
reconciliation require specialized knowledge of the system
for all transactions and special concurrency control mod-
els. We attempt to reach a balance between these solutions
by creating a system that provides consistency management
and that can use but does not need specialized knowledge to
provide conflict resolution.

1.3. Organization of the paper

We have organized the remainder of this paper as follows:
section 2 describes our model of the database; section 3 de-
scribes the multiversion reconciliation algorithm and dis-
cusses consistency properties; section 4 explores some prac-
tical concerns with the implementation of the algorithm and
section 5 briefly lists our conclusions.

2

2. The model

We model the database as a collection of data items (e.g.
tuples or objects) along with their versions. The data items
are drawn from a universe X. The database at any given
instant exists in a particular state. This state reflects the
updates due to all committed transactions upto this instant.
In practice, the database would also consist of data writ-
ten by active transactions. However, we ignore this for the
purposes of our algorithm, which only attempts to serialize
transactions against committed versions. Each (globally)
committed transaction that operated on the data is provided
a unique nonnegative integral commit timestamp on (glob-
ally) committing on the server, which can be different from
a possibly non-unique start timestamp, if such a start times-
tamp is provided. The timestamps reflect the order in which
the transactions commit. The version number of a version
of a data item is the commit timestamp of the transaction
that wrote it. Note that as each transaction commits on the
server (which means it globally commits), the database state
D “expands” to include the updates performed by the trans-
action. Since this also includes reconciling client transac-
tions,D progressively changes through the entire reconcili-
ation process as individual client transactions globally com-
mit.

Definition 1 (Database State and Value Function)
The state of the database on the server at any instant of time
consists of a set of elements D ⊂ X × Z+, a collection of a
finite number of versions of data items drawn from X and a
value : D →

S
x∈X domain(x) function that maps data items

and versions to the actual values of the data items. The domain of
the value function at any instant of time is the setD at that instant
of time, and the co-domain is the union of the domains of all the
data items in X .

Our characterization of snapshots is using snapshot func-
tions. There are two kinds of snapshots: version snapshots
consisting of data items and their versions (and hence im-
plicitly their values using the value function), and value
snapshots consisting purely of the data items and their val-
ues. Note that snapshots seen on a disconnected client
may have no correspondence to snapshots on the server and
hence a value snapshot from a client may not correspond to
any version snapshot on the server. This is because transac-
tions executing on the client are completely independent of
transactions executing on the server as long as the client is
disconnected. Hence the need for two separate definitions.

Definition 2 (Version Snapshot Function) A version snap-
shot function S : Z+ → D is a function that maps a nonnega-
tive integral timestamp into a snapshot of the database. For each
timestamp value it yields a collection of versions of data items with
the following properties:

1. S(v) ⊆ D. Every snapshot is a subset of the database state.

2. 〈x, v〉 ∈ D =⇒ 〈x, v〉 ∈ S(v). For any given snapshot
S(v), if the data item was written by transaction with times-
tamp v, then version v of the data item is in S(v).

3. 〈x, v′〉 ∈ S(v) =⇒ v ≥ v′. No data item in S(v) can have
version number greater than v.

4. ∀v, v′ : 〈x, v′〉 ∈ S(v) ∧ 〈x, v′′〉 ∈ S(v) =⇒ v′ = v′′.
Only one version of a data item can be present in a snapshot.

5. ∀v′, v′′ : v′ > v′′ ∧ 〈x, v′〉 ∈ S(v) ∧ 〈y, v′′〉 ∈ S(v) =⇒
[∀v′′′ ∈ Z: 〈y, v′′′〉 ∈ D ⇒ v′′′ < v′′ ∨ v′′′ > v′]. A
snapshot S(v) has the latest versions of the data items that
are less than or equal to v. Note that if a data item x was
introduced into the database by a transaction with timestamp
greater than v (i.e. x was inserted into the database by the
transaction), then x can not be in S(v).

From a computational perspective, S(v) is defined as fol-
lows (lub is the least upper bound and is equivalent here
to the maximum function): S(v) = {〈x, v′〉 | 〈x, v′〉 ∈
D ∧ v′ = lub{v′′|〈x, v′′〉 ∈ D ∧ v′′ ≤ v}}. S(v) is in
fact the snapshot of the database that a read-only transac-
tion with (start) timestamp v would see. Additionally, we
also define value snapshots Sv , which consists data items
along with their values (instead of their versions). We use
the superscript v to distinguishvalue snapshots from version
snapshots. Note that the value snapshots need not have cor-
responding version snapshots (especially if the value snap-
shots originate from a disconnected client). However, cor-
responding to every version snapshot S(v) there exists a
value snapshot Sv(v) = {〈x, i〉 | 〈x, v′〉 ∈ S(v) ∧ i =
value(x, v′)}. In order to simplify our exposition, we also
extend the value function to version snapshots as follows:
value(S) = {〈x, i〉 | 〈x, v′〉 ∈ S ∧ i = value(x, v′)}. Note
that only one value for each data item can be present in the
value snapshot.

As defined, a snapshotS(v) must contain all data itemsx,
such that 〈x, v′〉 ∈ D∧v′ ≤ v. However, we might be inter-
ested in subsets of such snapshots. Therefore, we also allow
partial snapshots where this requirement is relaxed. Instead
of requiring all data items in the data base to be tested, we
can restrict our attention to any fixed subset of X. This is
useful in characterizing the readsets and writesets of transac-
tions which contain subsets of data items from the database.

The concurrency control model on the server is assumed
to be modular as described by Agrawal and Sengupta in [2]
and Bernstein and Goodman in [5]. Here read only (query)
transactions run in a nonblocking fashion using old versions
of the data, while read write (update) transactions always
operate on the latest snapshot in existence when they start
executing. Any optimistic multiversion concurrency con-
trol protocol that guarantees at least snapshot isolation can
be used for the update transactions on the server. Requir-
ing that the protocol be optimistic simplifies our description
of the algorithm. With a little care, however, our algorithm
can easily be re-engineered to work with pessimistic mul-

3

tiversion concurrency control protocols. In that latter case
we have to be careful while serializing client transactions
on snapshots that are in “use” by active transactions on the
server.

The mobile clients can use any concurrency control pro-
tocol (multiversion or otherwise) as long as the read and
write sets (and the values read and written) of all locally
committed client transactions are available during reconcil-
iation.

Definition 3 (Read, Write and Read-Write Sets) For
each transaction T we define three partial value snapshots: the
RSETv(T), consisting of all data items which were read but
not written by T ; the RWSETv(T) consisting of all data items
read and then written by the transaction; and the WSETv(T),
consisting of all the data items that are written by T before they
are read (i.e. T blind writes all the data items in this set).1 We
also define READSETv(T) = RSETv(T) ∪ RWSETv(T) and
WRITESETv(T) = RWSETv(T) ∪WSETv(T).

To deal with conflicts we require conflict resolution func-
tions. For each client transaction Tc, the client can op-
tionally define a conflict resolution function CRTc . This
function can be provided by the client whenever it seeks
reconciliation of a transaction. If this function is not pro-
vided by the client the server uses a default. CRTc takes
as input three value snapshots: the readset consisting of
data items and values read by Tc, the writeset and values
generated by Tc and a new values snapshot against which
Tc needs to be serialized. The CRTc function returns a
new writeset for Tc, i.e. a value snapshot of the data items
along with new values, after conflicts have been resolved.
Thus, CRTc(READSETv(Tc),WRITESETv(Tc), Svin) =
NEWWRITESETv, wherever the function is defined. Note
that NEWWRITESETv only consists of data items that would
actually be written if conflict resolution took place for Tc
against Svin. If the conflict resolution function is defined,
the client must also define a cost functionCTc that takes the
same inputs as the conflict resolution function and returns an
integral cost value that indicates the cost of resolving con-
flicts for that set of inputs. An example cost function is:
CTc(READSETv(Tc),WRITESETv(Tc), Svin)

= |READSETv(Tc)− SREADSETv(Tc)|
where SREADSETv(Tc) = {〈x, i〉 | 〈x, i〉 ∈ Svin ∧ ∃i′ :
〈x, i′〉 ∈ READSETv(Tc)}. Here, the cost of resolving against
a snapshot is equal to the number of data items which have
different values in the snapshot and in the readset of Tc. If
the client does not specify these functions, the server uses
defaults defined as follows:

1The concept of a WSETvcomes largely from the work by Agrawal
and Krishnamurthy [1], which adapts multiversion concurrency control to
write-only transactions.

Definition 4 (Default Cost Function)
CTc (READSETv(Tc),WRITESETv(Tc), Svin)

=

�
0 if READSETv(Tc) ⊆ Svin
∞ otherwise

Definition 5 (Default Conflict Resolution Function)
CRTc (READSETv(Tc),WRITESETv(Tc), Svin)

=

�
WRITESETv(Tc) if READSETv(Tc) ⊆ Svin
undefined otherwise

These functions simply allow serialization of a transac-
tion iff the readset seen by the transaction from the snap-
shot it read from and the snapshot Svin against which it is
being serialized are identical. The cost function will usually
be infinity whenever the new input snapshot Svin is empty.
This, however, would not be the case for write-only trans-
actions [1]. These default functions are used by the system
whenever no explicit conflict resolution is requested by the
client. Note that our choice of inputs for the conflict reso-
lution function closely parallels the framework defined by
BAYOU. In essence, this function can be thought of as re-
executing the client transaction Tc on the new snapshot Svin.

3. The multiversion reconciliation algorithm

We now describe the multiversion reconciliation algo-
rithm. The basic idea is to consider each client transac-
tion in turn and compute a snapshot which is consistent and
leads to least cost reconciliation. The snapshots are com-
puted by considering each timestamp that could be provided
to the client transaction in increasing order. Furthermore, af-
ter conflict resolution the resulting writeset should not affect
any snapshot already present in the database. This is done by
ensuring that all writes in the new writeset are always seri-
alized after the latest version of the data item or just before
a blind write to the data item. A blind write to a data item
occurs when a transaction writes the data item without first
reading it. The algorithm proceeds by progressively com-
puting snapshots and attempting to serialize client transac-
tions against these snapshots. To achieve these two goals
(i.e. least cost reconciliation and snapshot isolation), we de-
fine two snapshot functions, the backward or the normal
snapshot functionS↓(v) and the forward or reverse snapshot
function S↑(v). The domain of these functions is the inte-
gral domain Z+ extended by a special element ∆ to form a
new domain Z∆ with the following properties (note that we
could instead work with real timestamps):

1. ∀i ∈ Z+ : i−∆ < i
∀i ∈ Z∆ : i−∆ < i

2. ∀i ∈ Z+ : j < i =⇒ j < i−∆
∀i ∈ Z∆ : j < i =⇒ j ≤ i−∆

3. ∀i ∈ Z∆, ∀k ∈ Z+ : i− ∆
k < i− ∆

k+1

4

Note that we assume that ∆
1 = ∆. We also extend the

set of allowable timestamps and versions to the domain Z∆.
The two snapshot functions can now be defined as follows
(glb is the greatest lower bound and is equivalent to the min-
imum function in the integral domain):

• S↓(k) = {〈x, v′〉 | 〈x, v′〉 ∈ D ∧ v′ = lub{v′′|〈x, v′′〉 ∈
D ∧ v′′ ≤ k}}

• S↑(k) = {〈x, v′〉 | 〈x, v′〉 ∈ D ∧ v′ = glb{v′′ | 〈x, v′′〉 ∈
D ∧ v′′ ≥ k}}

The algorithm uses the normal snapshot to determine the
input snapshot of the transaction. The reverse snapshot is
used to determine whether the transaction’s updates can be
serialized against the normal snapshot. In some sense S↑(k)
can be considered a reverse time snapshot, i.e. a snapshot of
the database, if time were reversed. Also note that S↓(k)
and S(k) are identical in the integral domain. We also de-
fine a version set V that consists of all versions in use in the
database when the client reconciles its local replica. Thus,
V = {v|∃x : 〈x, v〉 ∈ D}. Note that V ⊂ Z∆.

The basic building block of our algorithm is a procedure
to reconcile the updates of a single client transaction. This
procedure is illustrated in algorithm 1. We assume that this
algorithm executes atomically2. (We show how to relax the
atomicity requirement in section 4.2.) The algorithm can
then be used as a subroutine to reconcile the updates of all
reconciling client transactions on the server as illustrated in
Algorithm 2. Note that all snapshot and read/writeset com-
putations are performed with reference to the current trans-
action being reconciled, i.e. Tc and the current state of the
databaseD. In a fashion analogous to Gray et. al.’s model in
[8], the client may specify the CTc and the CRTc functions
for each client transaction Tc.

There are a few things to note about the algorithm. As
long as the conflict resolution and cost functions cover most
cases, Tc would rarely be aborted. This is because in our
model S↑(1 + lub(V)− ∆

i
) is always an empty set for any

integral i. Thus, the conditions in the inner for loop would
always be satisfied for this snapshot. This situation corre-
sponds to serializing the transaction against the current (lat-
est) snapshot of committed versions. The current snapshot
is defined to be S↓(∞) = S↓(1 + lub(V)). Also note that
the variable iter is static and its value is retained across in-
vocations of the algorithm. It allows the algorithm to find
“gaps” in the timestamp sequence.

The serialization operation at line 30 corresponds to in-
troducing elements in NEWWRITESETv into the database
with timestamp opt − ∆

iter . Thus, the operation replaces D
with

2Actually, read-only transactions can continue executing. This is be-
cause any snapshot on the server is guaranteed to be “undisturbed” due to
the monotonicity properties that must be guaranteed by the algorithm for
any set of snapshots of the current database state.

Algorithm 1 Multiversion Reconciliation Algorithm
Ensure: // Inputs: Database state D, Transaction Tc, Functions CRTc ,

CTc
Ensure: opt = −1
Ensure: cost =∞
Ensure: static iter = 1
1: // Main Loop:
2: for all v ∈ V ∪ {1 + lub(V)} in increasing order do
3: S↓ = S↓(v − ∆

iter
)

4: S↑ = S↑(v − ∆
iter

)
5: // Now find if this snapshot is best cost and use-able
6: if CTc (READSETv(Tc),WRITESETv(Tc), value(S↓)) < cost

then
7: NEWWRITESETv =

CRTc (READSETv(Tc),WRITESETv(Tc), value(S↓))
8: // NEWWRITESET should not conflict with any existing snapshot

in D
9: // Inner Loop:

10: for all 〈x, i〉 ∈ NEWWRITESETv do
11: // Is this element∈ S↑? If yes was it produced by a blind write?
12: if ∃v′ : 〈x, v′〉 ∈ S↑ then
13: Let T be the transaction with timestamp v′

14: if ∃i :< x, i >∈ WSETv(T) then
15: // 〈x, v′〉 is the result of a blind write
16: continue Inner For Loop
17: else // This snapshot cannot be used, continue with the main

loop
18: continue Main Loop
19: end if
20: end if
21: end for
22: cost = CTc (READSETv(Tc),WRITESETv(Tc), value(S↓))
23: opt = v
24: end if
25: end for
26: if cost =∞ then
27: // unable to reconcile updates
28: abort Tc
29: else // Reconciliation successful
30: serialize Tc with timestamp opt− ∆

iter
31: iter = iter + 1
32: end if

Algorithm 2 The Reintegration Algorithm
// Called for each reconciling client C
// Note that the database state D changes for every invocation of Algo-
rithm 1
for all Transactions Tc onC do

// The transactionswould usually be scannedin the order in which they
committed on the client, but this is not a requirement of the algorithm
per se.
Begin-Atomic
Invoke Algorithm 1 with D, TC , CRTc andCTc
End-Atomic

end for

5

D ∪ {〈x, opt− ∆
iter 〉 | ∃i : 〈x, i〉 ∈ NEWWRITESETv}

and value with
value ∪ {〈x, opt− ∆

iter〉 → i | 〈x, i〉 ∈ NEWWRITESETv}
(we use the→ instead of an ordered triple for clarity). Also
note that the value of iter is remembered between subse-
quent invocations on algorithm 1.

Even if a client transaction Tc is aborted, client transac-
tions that read dirty data from it need not be. Consider the
following example history on a single data item database:

Server: w0[x0] = 1, c0, r1[x0] = 1, w1[x1] =
2, c1, r2[x1] = 2, w2[x2] = 3, c2
Client: downloaded x0 = 1: r1′ [x] = 1, w1′[x] =
3, c1′, r2′[x] = 3, c2′

Note that, in this case, the client is not following a mul-
tiversion scheme. In the absence of explicit conflict res-
olution, transaction T1′ on the client must be rejected on
reintegration. This is because the T1′ can only be serial-
ized before T1 on the server but the NEWWRITESETv that
the default (trivial) conflict resolution handler produces is
{〈x, 3〉}. However, the snapshot S↑(1 − ∆) is {〈x, 1〉} in
which 〈x, 1〉 is not produced by a blind write3.

Even ifT1′ is aborted, however, T2′ can be serialized with
timestamp 3 (actually 3−∆) giving a serial history (we do
not assume any intertransactional dependencies):

Server: w0[x0] = 1, c0, r1[x0] = 1, w1[x1] =
2, c1, r2[x1] = 2, w2[x2] = 3, c2, r2′[x3] = 3, c2′

Note that this is because T2′ sees the same value snapshot
on the server that it sees on the client. Thus, cascaded aborts
would normally not be forced on the client.

3.1. The phenomena and the anomalies

We now validate algorithm 1 using the phenomena and
anomalies as specified by Berenson et. al. in [4]. We do this
to show that snapshot isolation is indeed provided by the
overall system. We briefly recapitulate the relevant phenom-
ena and anomalies analyzed in that paper in terms of histo-
ries allowed by the phenomenon or the anomaly:

• Phenomena P0 (Dirty Write)
w1[x] . . . w2[x] . . . (c1 ∨ a1)

• Phenomena P1 (Dirty Read)
w1[x] . . . r2[x] . . . (c1 ∨ a1)

• Phenomena P2 (Fuzzy Read)
r1[x] . . . w2[x] . . . (c1 ∨ a1)

• Phenomena P3 (Phantom)
r1[P] . . . w2[y : P (y)] . . . (c1 ∨ a1)

• Anomaly A3 (Phantom)
r1[P] . . . w2[y : P (y)] . . . c2 . . . r1[P] . . . c1

3Note that NEWWRITESETv is a value snapshot while S↑(1 − ∆) is
a version snapshot. In {〈x,3〉} the 3 is the value of x, but in {〈x,1〉}, 1
refers to the version of x.

• Phenomena P4 (Lost Update)
r1[x] . . . w2[x] . . . w1[x] . . . (c1 ∨ a1)

• Anomalies A5 (Data Item Constraint Violation)

– Anomaly A5A (Read Skew)
r1[x] . . . w2[x] . . . w2[y] . . . c2 . . . r1[y] . . . (c1 ∨ a1)

– Anomaly A5B (Write Skew)
r1[x] . . . r2[y] . . . w1[y] . . . w2[x] . . . (c1 ∧ c2)

Here the oi ∨ oj implies one or both of oi and oj occur in
any order, while oi ∧ oj implies both of oi and oj occur in
any order.

In order to provide snapshot isolation the system must
disallow histories with phenomena and anomalies P0, P1,
P3, A3, A5A and P4. Since we assume that the system
inherently guarantees at least snapshot isolation for server
transactions, we need to concentrate only on reconciling
client transactions.

Since we only operate on committed data on the server
it is obvious that the reconciliation algorithm does not al-
low phenomena P1 or P2. Interestingly enough in the form
in which we have presented the algorithm, it does allow
anomaly A3. To see this consider a client transaction that
used a predicate P to read data on the client. Suppose this
read produces 3 data items x, y and z. Thus, in effect the
readset of the transaction is {x, y, z}. Furthermore, suppose
that no conflict resolution is specified and the algorithm de-
cides to serialize the transaction against a snapshot which
has identical values of x, y and z, but also has an additional
item a which also satisfies P . This item would never get
reflected in the client transaction’s readset, which is a clear
violation of A3 and hence P3. (This is because reconcili-
ation can be considered as a second instance of r[P]. Fur-
thermore, if a transaction is serialized against a snapshot, it
implies that the transaction should have executed as if it had
been reading data from the snapshot in the first place.) A
solution to this problem is to provide read predicates rather
than readsets to the algorithm. Another possibility is for
the client to build the predicates into the conflict resolution
functions.

Since the client transaction always gets reconciled
against a snapshot of the database, anomaly A5A cannot
occur. Note that as long as a client transaction reads data
(or rather appears to read data) from a single snapshot, it
can not be reading data from an intermediate update. Also
note that uncommitted updates do not appear as a part of
the database’s state. This also precludes phenomenon P0
since the client transaction will only “overwrite” committed
writes (i.e. its writes will be serialized after committed
writes).

In order to disallow P4, client updates must neither over-
write nor be overwritten by committed updates. Another
way of looking at this requirement, is that the set of consis-
tent snapshots on the server must be monotonic, i.e. a rec-
onciling transaction must add snapshots to this set, but may

6

not delete any other snapshot. Furthermore, every commit-
ting client transaction must introduce exactly one additional
snapshot in the database. Note that in our case the snapshots
are tied to versions (see the definition of S(v)).

To avoid P4, new writes to a data item can be serialized
either before a blindwrite, where no read to the data item has
taken place; or after the last write to the data item in the cur-
rent database state (i.e. the current or latest snapshot). Since
our algorithm always serializes new writes either against the
latest (current) snapshot or before a blind write, P4 can not
occur. The former condition is precisely the reason why we
need a separate WSETv to pinpoint the blind writes.

The system obviously does not provide serializability
since it allows A3. It also allows A5B. To see this consider
the following example:

Server:w0[x0] = 1, w0[y0] = 1, c0, r1[x0] =
1, r1[y0] = 1, w1[y1] = 2, c1
Client:downloaded x0 = 1, y0 = 1: r1′ [x] =
1, r1′ [y] = 1, w1′ [x] = 3, c1′

On reconciliation of the client transaction 1′ the algo-
rithm yields the following history:

Server:w0[x0] = 1, w0[y0] = 1, c0, r1′ [x] =
1, r1′ [y] = 1, r1[x0] = 1, r1[y0] = 1, w1′ [x] =
3, c1′ , w1[y1] = 2, c1

Note that the snapshot S↓(1−∆) = {〈x, 0〉, 〈y, 0〉} and
value(S↓(1 − ∆)) = {〈x, 1〉, 〈y, 1〉} which is identical to
the value snapshot seen by client transaction 1′ giving a cost
of 0. Furthermore, S↑(1 − ∆) = {〈y, 2〉}. For the client
transaction 1′, NEWWRITESETv = WRITESETv(T1′) =
{〈x, 3〉} which does not “conflict” (i.e. have common data
items) with S↑(1 − ∆). Thus, transaction 1′ is serialized
with timestamp 1−∆, which means it is serialized after the
reads of transaction 1, but before its write.

It is easy to see that this history satisfies A5B. Thus, we
conclude that our algorithmprovides a weakened form snap-
shot isolation, i.e. snapshot isolation with phenomenon A3.

3.2. Providing serializability

As mentioned in the last section algorithm 1 does not
guarantee serializability. We do not believe that this would
be a problem for most systems. However, there might be
some systems where serializability is desired or necessary.
In this section, we show how to strengthen the algorithm to
provide serializability. Note that to guarantee serializability
on the system as a whole the server must have a multiversion
optimistic concurrency control model that guarantees serial-
izability for server transactions.

The key problems with providing serializability are
avoiding phenomenon P3 and A5B. As mentioned earlier

both A3 and P3 can both be avoided by using read predi-
cates to extract the read set from the snapshot, rather than us-
ing an absolute read set. The extracted set can then be tested
against the actual read set of the transaction. The definition
ofCTc and CRTc functions must be extended to allow for the
read predicates of the transaction. The default conflict reso-
lution and cost functions then become
CTc(READSETv(Tc),WRITESETv(Tc), Svin)

=
{

0 if READSETv(Tc) = PTc(value(Svin))
∞ otherwise

and
CRTc(READSETv(Tc),WRITESETv(Tc), Svin)

=

 WRITESETv(Tc) if READSETv(Tc)
= PTc(value(Svin))

undefined otherwise
where PTc is the read predicate of transaction Tc and

P (S) extracts from the set S a set of all elements e ∈ S
which satisfy P . Thus, P (S) = {e | e ∈ S ∧ P (e)}.

We believe that handling P3 is a primarily the function of
conflict resolution routines. Whenever a client wants to ex-
plicitly prevent P3, it simply needs to modify the functions
it transmits with the client transactions. Thus, normally the
server should not even care about read predicates.

To eliminate A5B, we note that the only reason histories
satisfying A5B are allowed by algorithm 1 is that only the
elements in the writeset of client transactions are inspected
for conflicts against the reverse snapshotS↑. Instead, if both
the read and writesets are inspected, then the resulting histo-
ries do not allow A5B. Thus, the for loop in line 10 of algo-
rithm 1 must be changed to read:

for all 〈x, i〉 ∈ NEWWRITESETv ∪ READSETv(Tc) do
...

end for
This modification can increase the collision cross section

of the client transaction on any snapshot. This is due to the
fact that there are additional elements to test in line 14 of al-
gorithm 1, which means that there are additional chances of
failure. Note that though most client transactions may have
small single element writesets, they can still have relatively
larger readsets.

4. Some practical considerations

4.1 Timestamp Maintenance

Algorithm 1 requires that its “input” transaction Tc be
serialized with some timestamp opt − ∆

iter
. This implies

that a new timestamp that is less than opt but greater than
lub{v | v ∈ V ∧ v < opt} must be given to the reconciling
client transaction. In practice, though, we need to have inte-
gral values for timestamps. The most direct but expensive
solution to this problem is to “renumber” the timestamps

7

each time a client transaction commits. An alternative is to
use commit lists as described in [9]. Instead of storing ver-
sion numbers with data items, we wouldstore transaction ids
and version numbers would correspond to the transaction’s
index in the commit list. Whenever a new transaction com-
mits with “timestamp” opt − ∆

k it is inserted into the com-
mit list just before the transaction with index opt. Another
way of achieving integral timestamps is to leave “gaps” in
the sequence of timestamps provided by the server, e.g. by
splitting the timestamp into a most significant for commit-
ting server transactions and a least significant part for com-
mitting client transactions.

4.2. Increasing parallelism

The algorithm as described in the section 3 has one prob-
lem. It requires that the reconciliation of each client transac-
tion be an atomic operation. Unfortunately, such reconcilia-
tion is likely to be a time consuming process since multiple
snapshots must be computed and tested. Thus, the system
throughput as a whole is likely to suffer during reconcili-
ation due to loss of parallelism. We present a preliminary
technique to improve parallelism in the system.

We can do this by exploiting one key property of the al-
gorithm and our model of the database. The active transac-
tions in our model always commit against the current snap-
shot. (Note that though these transactions might be read-
ing data from an older snapshot, they must always be se-
rialized after the current snapshot, which means that they
must be serialized after the transaction that wrote the cur-
rent snapshot.) Furthermore, the algorithm always scans the
V in increasing order. Thus, a tree locking protocol with ac-
cess intention locks on the elements of V can be used to im-
prove parallelism in the reconciliation process. As long as
the last element of V is not locked, server transactions can
continue executing, since in our model, they must always
commit against the latest snapshot (i.e. after the last com-
mitted transaction).

5. Conclusions

We have presented an algorithm that provides multiver-
sion reconciliation. The algorithm is unique in that conflict
resolution and detection are integrated with global serializ-
ability testing. We have also presented some practical con-
siderations for implementation of the algorithm.

A key concept in our algorithm is that conflict resolution
and detection are decoupled. The responsibility for detect-
ing conflicts lies with the server. This is done by performing
serializability testing on locally committed transactions on
reconciling clients. On the other hand, conflict resolution is
the responsibility of the client. The client manages this by
providing the conflict resolution and cost functions for each

transaction. In the absence of these functions, the server as-
sumes a default, which guarantees snapshot isolation to “un-
modified” client transactions.

References

[1] D. Agrawal and V. Krishnamurthy. Using multiversion
data for non-interfering execution of write-only transactions.
Proceedingof the ACM SIGMOD conference, pages 98–107,
1991.

[2] D. Agrawal and S. Sengupta. Modular synchronization
in multiversion databases: Version control and concurrency
control. Proceedings of ACM SIGMOD Conference, pages
408–417, 1989.

[3] R. Alonso and H. F. Korth. Database system issues in no-
madic computing. Proceedingsof the ACM SIGMOD, pages
388–392, June 1993.

[4] H. Berenson, P. A. Bernstein, J. Gray, J. Melton, E. J. O’Neil,
and P. E. O’Neil. A critique of ANSI SQL isolation lev-
els. Proceedings of ACM SIGMOD Conference, pages 1–10,
1995.

[5] P. A. Bernstein and N. Goodman. Concurrency control in
distributed database systems. ACM Computing Surveys,
13(2):185–221, June 1981.

[6] S. B. Davidson. Optimism and consistency in partitioned dis-
tributed database systems. ACM TODS, 9(3):456–481, Sept.
1984.

[7] A. Demers, K. Petersen, M. Spreitzer, D. Terry, M. Theimer,
and B. Welch. The BAYOU architecture: Support for data
sharing among mobile users. Proceedingsof the IEEE Work-
shop on Mobile Computing Systems and Applications, pages
2–7, Dec. 1994.

[8] J. Gray, P. Helland, P. E. O’Neil, and D. Shasha. The dangers
of replication and a solution. Proceedingsof ACM SIGMOD,
pages 173–182, June 1996.

[9] J. Gray and A. Reuter. Transaction Processing: Concepts
and Techniques. Morgan-Kaufmann, 1993.

[10] T. Imieliński and B. R. Badrinath. Mobile wireless comput-
ing: Challenges in data management. Communicationsof the
ACM, 37(10):18–28, 1994.

[11] R. Katz and S. Weiss. Design transaction management. Pro-
ceedings of the 21st Design Automation Conference, pages
692–693, 1984.

[12] N. Krishnakumar and R. Jain. Mobile support for sales and
inventory applications.

[13] G. Kuenning, G. J. Popek, and P. Reiher. An analysis of trace
data for predictive file caching in mobile computing. Pro-
ceedings of the USENIX Summer Conference, pages 291–
303, 1994.

[14] H. T. Kung and J. T. Robinson. On optimistic methods of
concurrency control. ACM TODS, 6(2):213–226, June 1981.

[15] M. Satyanarayanan. Coda: A highly available file system for
a distributed workstation environment. Proceedings of the
Second IEEE Workshop on Workstation Operating Systems,
pages 447–459, Sept. 1989.

[16] G. Walborn and P. Chrysanthis. Supporting semantics-based
transaction processing in mobile databasesystems. Proceed-
ings of the 14th Symposium on Reliable Database Systems,
Sept. 1995.

8

