Location Dependent Data and its Management in Mobile Databases

Margaret H. Dunham

Vijay Kumar

Department of Computer Science and Engineering Computer Science Telecommunications

Southern Methodist University
Dallas, Texas 75275-0122

mhd@seas.smu.edu

Abstract
Location Dependent Data s data whose value de-
pends on its location. The objective of this paper is to
wntroduce this topic and spawn further related research.

1 Introduction

In traditional ways of managing data, the relation-
ship between the data and the geographical location
of the organization it represents, is usually ignored.
In wireless computing this property of “location trans-
parency” 1is in fact often replaced by a “location de-
pendency” property. Furthermore, the mode of issuing
queries (the geographical location where the queries
originate, the way they are issued, etc.) on such data
determines the outcome. Location Dependent Data
(LDD) refers to data whose values depend on location.
The following examples illustrate these points.

Example 1 LDD - Hotel Information: Suppose a
traveler wants to find out information (location, room
rent, etc.) about hotels in the middle of his journey. He
1ssues a query to obtain this information. The answer
to this query depends upon the geographical location. At
one place, for example Dallas, the answer might be a
Holiday Inn. and at another, for ezample Kansas City,
the response might be a Best Western. It would even
be possible for a traveler driving from Dallas to Kansas
City to ask the same question en route but request the
response using Kansas City data rather than local data.

Example 2 LDD - TV Station Tuning: While
driving through Tezas, Sarah wants to be able to ensure
that her children can watch their favorite TV shows.
She has a TV wn the van and whenever the reception
becomes poor, she wants to find out the local TV sta-
tions. So she periodically enters a query of the form
"Find the local TV stations”. The response will vary
from locale to locale, but will list the T'V station number

and local affiliate.

We observe the following from the above examples:
(a) the semantics of a set of data and their values are
tightly coupled with a particular location, (b) the an-
swer to a query depends on the geographical location
where the query originates, and (¢) a query may be
valid only at a particular location.

While the issue of location dependent queries has
been proposed as an important issue related to mobile

University of Missouri-Kansas City
Kansas City, Missouri 64110
kumar@primus.cstp.umke.edu

computing [2], little work has been done which exam-
ines the data itself and the impact on database pro-
cessing issues. The contributions of this paper, thus
can be summarized as follows:

e Introduction of the location dependent property
of data and its formalization.

e Identifying the unique processing requirements
and approaches for managing them efficiently.

e Use of mobile computing in processing such data.

2 Location Dependent Data

We use our earlier mobile platform model [2] in this
paper. Base Stations (BSs) and Fixed Hosts (FHs)
are connected through wired links and Mobile Units
(MUs) are connected to BSs via a wireless network.
We assume that a BS has the resources (disk space,
CPU) needed to assist in data processing. We define
the following and use them throughout this paper.

Definition 1 The Geographic Domain, G, is the
entire area covered by the Mobile Computing Platform.
Thus a mobile unit can freely move around in G.

Definition 2 A Location ¢s a precise point within the
Geographic Domain. It represents the smallest tdenti-
fiable position wn the domain. It can be represented
in terms of a latitude/longitude pair. Fach locatlion is

wdentified by a specific id, L. Also, G = UL VL.

In a centralized database system it is usually as-
sumed that there is only one copy of each data object.
In a distributed environment there may be multiple
copies, however there is only one “correct” value. In
mobile computing, much research has examined how
data may be cached at the MU [1]. Tt is normally as-
sumed that the data cached at the MU is a replica
of that in the fixed network and is usually considered
to be a “secondary copy” much like replicas in a dis-
tributed environment. This framework is not adequate
to handle location dependent data. FEven with sec-
ondary replicas, it is assumed that there i1s only one
value. With location dependent data we must be able
to support multiple different values.

We introduce the concept of “data region” to ex-
plain our view of data. A data region is a logical

boundary within which a data object has only one cor-
rect value. In Example 2, the TV station number for
NBC affiliate is different in Kansas City than in Dallas.
The data values (station number) differ in each data
region (Dallas and Kansas City). It is possible that the
Dallas region or Kansas City region may be covered by
a number of cells; in that case the data region for Dal-
las will have these cells all included within it. A data
region 1s different from a cell of mobile computing.

Definition 3 A Data Region, R, is a logical area
within G, thus R C G, within which one correct value
exists for a data object.

With a conventional distributed database, each ob-
ject has only one data region - the entire geographic
domain.

2.1 Spatial and Temporal Replicas

In a distributed database we may have multiple
replicas. We use the notation O; to indicate a data
object (e g., a relation, a set of tuples, etc) ¢ where ¢
s a unique integer value. If replication exists, we add
an additional subscript to indicate the rephca num-
ber: O;;. Here ¢ is an integer value representing the
replica 1dentity. In a distributed environment, sup-
pose that there existed four replicas for object O;:
01.1,01,2,01,3,01 4. At any point in time there is only
one correct value for O;.

Traditional databases are snapshots of temporal
data. That is, they represent data values at one instant
of time. Replicas may temporarily have different actual
values, but it is the responsibility of some implemented
replica control policy to maintain mutual consistency.
Replicas may change their values over time under the
same set of consistency constraints. We thus refer to
these traditional replicas as “Temporal Replicas”.

Definition 4

Temporal Replication refers to copies of data ob-
jects all of which have only one consistent data value
at any point i time. One of these copies ts called a
Temporal Replica.

In a mobile computing database, however, multiple
copies of a data object may have different correct val-
ues. Example 2 above returns different data in Dallas
and Kansas City. The station number for “NBC” is
not the same in each area. We use the term “Spatial
Replica” to refer to these copies of the object.

Definition 5 Spatial Replication refers to copies of
data objects which may have different correct data val-
ues at any point in time. Each value is correct within
a given region. One of these copies is called a Spatial
Replica.

Unlike temporal replicas, no attempt is made to en-
sure that different spatial replicas of an object have
the same value. For this reason, spatial replicas can-
not be processed using the read-one write-all version of
distributed two-phase locking concurrency. We don’t
want to force all spatial replicas to be updated.

A superscript is added to show the spatial replica.
Thus O} , represents a replica of object O; in data re-

gion s with replica number ¢. Each spatial replica has a

unique superscript value. Figure 1 shows four data ob-
jects: O1, Oz, Oz, and O4. O1, Oy and O4 do not have
spatial replicas (Actually we could view that there is
only one spatial replica for each, but by convention we
omit the superscript of 1 in this case.) O; has three
temporal replicas: Oy 1, O1,2, and Oy 3, O2 also has
three temporal replicas: Oz 1, Os,2, and Oz 3, and Oy
does not have any replicas. In this case we drop the
second subscript. Os has both temporal and spatial
replicas. We show three data regions for this object
O}, 0%, and O3. The first spatial replica has two tem-
poral replicas: Oé,l and Oé,z The third spatial replica
also has two temporal replicas: Og,l and Og,z The

second spatial replica has no temporal replicas: OZ%. In
this case we again drop the second subscript as there
are no other copies of the spatial replica.

Data region 3 .

i = Objectid
O\ s=home region id for spatial replica
t=temporal repiica #

o Cell

Data Region

S T T & wobile Unit
Data region 2

Figure 1: Different Replication Types

Notice that this notation indicates the data region
associated with an object. Here 03 5 1s the second tem-

poral replica of the spatial replica for object 3 in data
region 1. Thus the schema of O3 is replicated in regions
1, 2, and 3, but no attempt is made to keep these three
spatial replicas of the same object consistent. Even if
they contain the same data values, semantically they
are different. In Figure 1 replica Oé,z is stored at a

mobile unit currently in data region 3. As the mobile
unit moves around it may move into data region 2 or
back to data region 1. However, it is always a copy of
the object for data region 1 and should have the same
value as the data from data region 1. Here data region
1 is the “home region” for the spatial replica Oé,y As

the mobile unit moves around, the actual data region
where it resides changes, but the home region always
remains the same. Every spatial replica has its home
region and the spatial replica belongs to this region. A
spatial replica of a home region may be “borrowed” by
a foreign region for use after satisfying some criteria
set by the home region. For example, the mobile unit
moves into region 3, or there could even be a temporal
replica of a spatial replica in a foreign region at a fixed
host. Consider the following example:

Example 3 Any two or more cities or counitries may
have a common geographical border. For managing

activities at the border, two cities or countries may
temporally replicate some spatial replica. For eram-
ple, to control the traffic flow and smuggling at the
USA/Mexico border, Mexico might replicale wvehicle
registration data from USA, and vice versa. Replica
restrictions could indicate that these temporal replicas
can not be updated in the foreign regions.

Temporal replicas of spatial replicas which exist in
foreign data regions exist for the same reason as other
temporal replicas: to improve performance. They may
also exist because of the fact that boundaries between
regions themselves may not always be clear cut. An
MU close to the boundary between two data regions
may actually prefer to receive data from a foreign re-
gion rather than its home region. For example, a trav-
eler driving into a city currently on its outskirts might
wish data for the city itself. Thus, even though we
assume that the data regions precisely partition the
geographic domain G, there are cases where data from
foreign regions will coexist with the spatial replica for
that region as well. For example, USA vehicle data
(USA is the home region) overlaps in the Mexico re-
gion (foreign region of USA data). We assume that this
temporal replica in another region will be subject to a
set of update and/or access constraints as defined by
the replica control policy in effect at the home region
(USA in this case).

The spatial replica is tightly coupled with a specific
region. To associate a spatial replica with the correct
data region, we define a mapping function, which we
refer to as “Data Location Mapping”.

Definition 6 Given a set of data objects D and a
set of data regions R, a Data Location Mapping
DLM s a mapping DLM D — P(R) where

DLM(D)={Ry, Ro, .., R}, Ri € R, U, R; = G, and
Vi,j RiNR; =0. (Here P(R) is the power set of R.)

Thus the set of data regions for a data object is a par-
titioning of the geographic domain. In the case where
no spatial replication of a data object exists, then the
number of data regions for that object is one. That is,
for an object with no spatial replica D(O) = G.

Definition 7 Given a set of data objects D, a set of
location wds L, and a set of data regions R, a Data
Region Mapping DRM is a mapping DRM : D x
L — R where DRM(< D, L >) € DLM (D).

Notice that a data region is identified by the data
object and the location. Thus as an MU moves, each
location uniquely identifies for all data objects the data
region to which each belongs. This gives us a technique
to perform location dependent queries which return
data values for the location from which they execute.
Notice that this approach is consistent with that in a
centralized or distributed environment where only one
data region exists for all data objects. Notice that in
Figure 1 one mobile unit is actually accessing a replica
of O3 from data region 1, Oéyz, even though it is physi-
cally located in the data regions 3 for this object. This
could easily occur if the MU cached that replica while

in data region 1 and is continuing to execute a query
using this value. As we briefly discuss later, this points
out issues associated with when and how a query 1is
bound to a region. Even though we assume that based
on a location there is a unique data region for each ob-
ject, there are cases when temporal replicas of values
from its home region are found within other foreign
regions. The temporal replica, Oéyz, discussed above

illustrates how this may occur with data cached at a
MU. Our earlier example of overlapping USA vehicle
data provides another scenario when this may occur.

2.2 Consistency in LDD

In a centralized or distributed environment there is
only one correct value for each data object. The term
mutual consistency is used to indicate that all the val-
ues converge to this same correct value [6]. A repli-
cated database is said to be in a mutually consistent
state if all copies have the exact same value [6]. In ad-
dition, a database is said to be in a consistent state if
all integrity constraints identified for the database are
followed [6].

Mobile computing complicates these concepts in
much the same way as data replication. When per-
forming location dependent queries, a consistent view
is obtained if all data is seen with respect to one lo-
cation. So, for example, if we get a list of hotels and
restaurants it will be for one location. We won’t get
hotels for Dallas and restaurants for Kansas City. Con-
sider issuing a query “List the names of all hotels”. If
this query 1s processed in a traditional distributed en-
vironment with temporal replicas, then it will list the
names of all the hotels in the entire geographic domain.
But if it 1s processed on spatial replicas, then it will list
only the names of hotels situated in the corresponding
data region. The consistency for spatial replication is
localized to that region. Mutual consistency is guar-
anteed across temporal replicas of each spatial replica,
but there is no such thing as mutual consistency across
the spatial replicas themselves. We, therefore, define
the concept of spatial consistency and refer to the tra-
ditional consistency as temporal consistency.

Definition 8 Temporal Consistency indicates that
all data object values must satisfy a given set of in-
tegrity constraints, independent of location. A database
s in a Temporally Consistent State if all temporal
replicas of an object have the same value.

Definition 9 Spatial Consistency indicates that all
data object values (instances of a common schema) of
a spatial replication are associated with one and only
data region, and they satisfy consistency constraints
as defined by the region. Thus there 1s 1:1 mapping
between data value set and the region it serves.

3 A Review of Previous Work

Our approach for dealing with LDD queries and
transactions is quite different from that of the MOST
[8] approach, which is the only other research project
in this area of which we are aware. They introduce
the concept of dynamic attributes whose value change
continually as a function of time. In addition, a lan-
guage, Functional Temporal Language (FTL), used in

the MOST model is proposed. Like our approach, they
incorporate both spatial and temporal aspects into
their location dependent processing. We don’t require
that specific location data be placed in the database
(although this would be allowed with our approach).
The database can be thought of as partitioned into lo-
cations. Each partition would have the correct data
values for that location. For example, motel informa-
tion in Dallas would not have motel information for
Kansas City. Although the motel databases at each
location could have the same schema, the instances
stored would be different. (It is possible that there is
an overlap between the data at multiple locations, how-
ever.) We would like to point out that our work does
not conflict with that in [8]. Indeed location depen-
dent data could be partitioned using the approach we
introduce below and could as well (although it doesn’t
have to) follow the MOST approach.

4 Query Processing of LDD

In this section we explore some of the i1ssues related
to accessing location dependent data.

4.1 Possible Approaches

The examples introduced earlier illustrated the need
to be able to provide location dependent answers to the
same query based on location of the MU. We envision
three approaches to correctly process these queries:

e Data Alone: Store data in such a way that when
a query is executed it is routed to the correct data
to be examined. Thus the query is not modified,
but the data (somehow) is stored and accessed in
such a way that different instances of the database
will be used to give different results.

e Query Alone: Augment each query (transaction
request) with location information. Thus when
the data is accessed the correct answer will be gen-
erated. This may require extra location informa-
tion to be added to the data, but the placement
and access of data is handled as if the queries were
location transparent. Only the query changes.

e Both Data and Query: This approach requires
both changes to how the data is stored and how
queries are executed. This 1s the approach that
we propose.

Table 1 illustrates these options for Example 2.
Both total data and data associated with a specific
location are included. With the first option, when a
query is issued in Dallas it would be directed to only
the data associated with Dallas, Table 1b. Notice that
with this approach, the size of the database to be ex-
amined would be reduced. We need the location for the
global table to add to the affiliate attribute to make a
key. Thus we see that use of the first option, is not a
simple partitioning and that it reduces the size of the
data to be examined.

With the second option, the table for the total data,
Table la, would be examined. While this table could
be replicated (and perhaps partitioned) at multiple
sites for efficiency, the value of the data at all sites
would be the same.

Sta Loc Affil |

9 Dallas ABC . .

3 Dallns CBS [Sta, Affil] [Sta, Affil
6 Dallas FOX 9 ABC 5 ABC
10 Dallas NBC 3 CBS 10 CBS
5 Austin_| ABC 6 FOX 3 FOX
10 Austin CBS 10 NBC 12 NBC
3 Austin_| FOX

12 Austin_| NBC (b) Dallas Data (¢) Austin Data

(a) Total Data

Table 1: Tabular data of Example 2

We must be able to differentiate the type of queries.
For example, consider the query “List the names of the
hotels” issued by a customer from an M U. If the sys-
tem processes this as a temporal replica query, then the
answer will contain a list of all hotels in the geographic
domain. Otherwise the list will contain names of the
local hotels only. In conventional systems such queries
may be regarded as a general query and for any spe-
cific query, the user would provide additional location
information. Thus, to get the names of local hotels, the
query would contain the name of the location. In mo-
bile computing, however, the opposite is true. In our
approach, therefore, every query is spatial by default
and a temporal query is specifically identified.

The use of location dependent data has several de-
sirable features. It would reduce the size of the ta-
bles to be examined, thus improving the efficiency of
the queries. Scalability and maintainability would also
be improved due to the fact that local data is stored
and managed locally. This approach allows a global
information service provider to implement multiple
database sites similar to the local service providers.
Users of global service providers could ask exactly the
same queries from any site. The answers would differ
because the LDD tables would be used to answer them.

Think of each user’s query as identifying the spa-
tial replica to be used. Instead of maintaining large
databases, we envision that these fragments (or spatial
replicas) will be located at different sites throughout
the entire geographic domain. Each service provider
will have these spatial replicas spread around to mul-
tiple sites with each site maintaining only the data
appropriate for the MSCs (Mobile Services Switching
Center) which will be connected to it. Thus when a
request is sent to an MSC, it will be forwarded to the
correct SCP (Service Control Point) for that MSC. The
data at that SCP will be only for that MSC. This points
out a problem if option 3 is not used. Namely, if the
query is not changed at all, how can the correct spa-
tial replica be identified? The current location of the
MU could be used to determine the data region, how-
ever this may not be the value which the user wishes.
Without option 3, a user in Dallas would not be able
to query Kansas City data. Thus we must have both
data and query modifications.

4.2 Binding

Since the MU is moving, the binding of the query
to a location (and ultimately a data region and spatial
replica for each object) has many possibilities. When
and how to do this binding impacts the results of the

query. To process a query we must be able to deter-
mine the binding granularity, what binding location to
use, whether to allow the binding to vary, and how
to implement the binding. The binding granularity is
ultimately a latitude longitude pair. This granularity
might be too restrictive for some applications and a
granularity higher (such as a cell associated with a BS
might be more appropriate). The following options ex-
ist for choice of binding location: location of MU when
query is first requested, location of MU when query is
committed, location specifically identified in query, or
projected location based on movement of MU. While
there may be other choices these appear to be the most
appropriate at this point. If indeed a location is identi-
fied in the query, then this will be the location. Future
research must examine the other options to determine
if there are other choices and which are most appropri-
ate under what conditions.

4.3 Caching

Caching of data at MUs can improve performance
and facilitate disconnected operation. Much research
has been performed in the area of MU caching [1].
Caching issues are complicated by the use of LDD.
Because of the fact that data which is cached can be
viewed as a temporal replica of spatial data, as a MU
moves into new data regions the cached data may be-
come obsolete. This data is not stale because it is
incorrect, but may not be desired because it 1s from a
foreign region. Replacement policies need to be reex-
amined to include location information. For example,
data from a foreign region should perhaps be replaced
before data from the current home region even though
the foreign data is more recently used. However, this is
further complicated by the fact that ongoing or future
queries could be bound to foreign regions. The MU
mobility is such that the MU could very quickly move
back into the home region for this data, making the re-
placement policy also subject to movement of the MU.
All of these issues are beyond the scope of this paper,
but certainly need to be studied.

5 Transaction Management

To facilitate the possibility that different portions
of a transaction may be associated with different loca-
tions, we propose the use of execution fragments. A
mobile transaction, T;, is a database transaction re-
quested from an MU. An execution fragment, e;j is a
part of a mobile transaction. Just as spatial replicas of
a mobile transaction are associated with a data region,
so too are execution fragments:

Definition 10 FEach execution fragment, e;j, of a mo-
bile transaction, T;, is associated with a unique loca-
tion. Given a set of execution fragments £ we define a
Fragment Location Mapping F LM is a mapping
FLM:&— L.

The FLM identifies the location with respect to which
each execution fragment i1s executed. This identifies
the spatial replica to be used for each data object in
that fragment. given the FLM which identifies the lo-
cation for the fragment, the DRM mapping indicates
the data region to be used for each data object. Thus

we have a set of data regions associated with each frag-
ment. In addition, it is used to ensure spatial consis-
tency of fragments within a transaction.

5.1 Atomicity

The purpose of atomicity is to ensure the consis-
tency of the data. However, in a mobile environment
we have two types of consistency. Certainly atomic-
ity at the execution fragment level is needed to ensure
spatial consistency. However, transaction atomicity is
not. We could have some fragments execute and others
not.

Definition 11 A mobile {transaction, T;, salisfies
Spatial Atomicity iff each execution fragment, e;j,
of T; is atomic. T; 1s said to be Spatially Atomic iff
each execution fragment, e;j, is atomic.

Theorem 1 If all mobile transactions satisfy spatial
consistency then spatial atomicity is required.

Proof: (Proof by contrapositive) Suppose that a
transaction does not satisfy spatial atomicity. Then
there must be a fragment of this transaction which has
only partially updated the database. As such, spatial
consistency is then not necessarily maintained.

The converse of this theorem is not true. To be spa-
tially consistent, a mobile transaction need not be
atomic at the transaction level.

5.2 Isolation

We need to reevaluate transaction isolation when
spatial consistency 1s present. As with consistency, iso-
lation at the transaction level is too strict.

The important thing is to ensure that execution frag-
ments satisfy isolation at the execution fragment level.

Definition 12 A mobile {ransaction, T;, salisfies
Spatial Isolation iff each execution fragment, e;j, of
T; is isolated from all execution fragments of T; or any
other transaction.

Theorem 2 If all mobile transactions satisfy spatial
consistency then spatial isolation is required.

Proof: Simple contrapositive proof is omitted.

5.3 Location Dependent Commit

To ensure spatial consistency, spatial isolation, and
spatial atomicity, mobility forces that the commit also
change. We introduce the concept of location depen-
dent commit.

Definition 13 An ezecution fragment, e;j, salisfies a
Location Dependent Commit iff the fragment op-
erations terminate with a commit operation and a FLM
exists. Thus all operations in e;j operate on spatial
replicas defined by a DLM on the location identified by
the FLM. The commut ts thus associated with a unique
location, L. To indicate this we write commity,.

5.4 Transaction Definition

We now define a mobile transaction which uses
the concept of location dependent data. Many differ-
ent techniques for processing mobile transactions have
been proposed [4], but this definition is independent of
a particular technique for processing a query.

Definition 14 An Execution Fragment ¢;j is a
partial order e;j = {o;,<;} where

e 0g; = 05; U {N]} where 0OS; = UrOjk , Ok €
{read, write}, and N; € {abortp, commity}.
Here these are a location dependent commit and
abort.

e For any Ok and O;l where Ojk = R(x) and
O;l = W(x) for a data object x, then either
O]']C Sj O]l or O]l Sj O]k‘

e YOk € 0S;,0;k <; N;

The only difference between an execution fragment and
a transaction is that either a location dependent com-
mit or abort is present instead of a traditional com-
mit or abort. Every fragment is thus associated with
a location. However, keep in mind that if the data
object being updated has temporal replicas, then the
fragment updates all replicas (based on some replica
control policy). Thus it is not subjected to location
constraints and appears as a regular transaction.

Definition 15 A Mobile Transaction, T;, is a
triple < F;, L;, FLM; > where F; = {e;1,...,e;n} is
a set of execution fragments, L; = {l;1,....lin} is a sel
of locations, and FLM; = {flm;1, ..., flm;n} is a sel
of fragment location mappings where Vj, flm;j(e;j) =
l;j.

In traditional database systems, the transaction is
assumed to be a unit of consistency. Even with spatial
atomicity, this is still the case with a mobile transac-
tion. A Mobile Transaction is a unit of consistency.
That 1s, given a database state which is both tempo-
rally and spatially consistent, a mobile transaction 7;
converts this state into another temporally and spa-
tially consistent state.

6 Implementation of LDD

L L
BSC
SC

Other SCPs
Figure 2: Implementation Architecture for LDD

Figure 2 shows our proposed approach to implement
location dependent data. When a query is requested
from an MU, 1t is routed to the MSC where the cor-
rect SCP to service this message is determined. Each

MSC has a unique SCP for each service provider. The
SCP has a database which contains the location de-
pendent data. It has the temporal replicas for any
data to be accessed from the cells in the MSC area as
well as the spatial replica for those objects which have
a home data region within the MSC area. All SCPs
are connected in a network and appropriate distributed
database concurrency control and recovery approaches
are implemented across the SCPs. In the case that
the amount of data is too large to be stored at the
SCP, then corresponding database servers may exist
elsewhere on the fixed network. In this case, the SCP
routes the query to the correct location for processing.
It is assumed that the MSC adds the location to the
request. So that when the SCP receives this message,
this default location binding has been determined. If
the query contains another location, then this overrides
the default location and the SCP forwards the query
to that location for processing.

7 Conclusions and Future Research

In this paper we have introduced the concept of lo-
cation dependent data and discussed some of the as-
sociated research issues. A further related discussion
can be found elsewhere [5]. Specific topics requiring fu-
ture research include location binding granularity and
variability, query language changes needed to support
LDD, transaction mangement issues including commit,
and use of caching with LDD.

References
[1] Barbara, D.; and Imielinski, T. Sleepers and Worka-

holics: Caching Strategies in Mobile Environments.

Proc. ACM SIGMOD Conf., Minneapolis, May, 1994.

[2] Dunham, M. H., and Helal, A.;, Mobile Computing and
Databases: Anything New?, SIGMOD Record, Vol. 24,
No. 4, pages 5-9, December 1995.

[3] Gray, J., and Reuter, A., Transaction Processing:
Concepts and Techniques, Morgan Kaufmann Publish-
ers, 1993.

[4] Helal, S., Balakrishnan, S., Elmasri, R., and Dunham,
M., Mobile Transaction Models, Purdue University,
Department of Computer Sciences. Technical Report
number 96-003, Jan 1996.

[5] Kumar V. and Dunham M. H., Defining Location Data
Dependency, Transaction Mobility and Commitment,
Technical Report 98-CSE-1, Southern Methodist Uni-
versity, February 1998.

[6] Ozsu, M. Tamer and Valduriez, Patrick, Principles of
Distributed Database Systems, Prentice Hall, 1991.

[7] Samet, H. and Aref, W., Spatial Data Models and
Query Processing, in Modern Database Systems, The
Object Model, Interoperability, and Beyond, edited by
Won Kim, Addison-Wesley Publishing, 1995.

[8] A. Prasad Sistla, O. Wolfson, S. Chamberlina, and
S. Dao, “Modeling and Querying Moving Objects,”
Proceedings of the IEEFE International Conference on
Data Fngineering, 1997, pp. 422-432.

