372

Extensible Motor of a Object-Relational DBMS:
' Design and Implementation

Shi-guang Ju, Sergio V. Chapa and Wei-he Chen
Computer Dept., Jiangsu University of science & technology, China
Computer Dept., CINVESTAV, IPN, Mexico
Jushig@delta.cs.cinvestav.mx
Schapa@alpha.cs.cinvestav.mx

Abstract

A Object-Relation DBMS design and implementation is introduced. It is
a hybrid of relational database management and object-oriented technique. It
will support the ORSQL that is the super-set of SQL and is applied to those
application involved of complex datatype and complex query. In the paper, we
emphatically describe the system architecture and its mechanism of storage,
access and query that appropriately apply to the complexity, dynamic and
high-dimensions datatype.

1 Introduction

As the social demand for database use expands, new application fields of database
are emerging continuously. They have imposed many new demands on data man-
ager.

o To store and manage all kinds of complex objects, which have complex struc-
ture in common, i.e., some of attributes, describing an object, may be another
object.

s To add new datatypes and specific operations in some applications. So it
is naturally for a DBMS to support user-defined function and user-defined
datatype.

To support dynamic schema modification. For example, in an engineering
design system, the design data are increased and modified step by step. It is no
surprising that some entity’s structures and relationships between themselves
are not considered in their previous design stages. In the case, we have to
modify the previous schema. And so DBMS must have the capability of
dynamic schema modification. ’

o To process multiple dimensions data.

0-7695-0393-4/99 $10.00 © 1999 IEEE

Of these new features, both traditional relation DBMS and object-oriented
DBMS are difficult to manage these data efficiently. It is commonly recognized
that this model is inadequate for future data processing applications. The rela-
tional model successfully replaced previous models in part because of its “Spartan
simplicity”. However, as mentioned, this simplicity often makes the implementa-
tion of certain applications very difficult. So we have to study and develop some
new type DBMS systems. : :

One of the most important leading directions of new advancement in DBMS is
combining relational technique with object-oriented technique to form a new type
database management system.

Definition 1. A system has the capabilities of relational DBMS and support
object-oriented, mainly extending classes, inheritance, types and functions. And
providing the powers: constraints, triggers, rules, transaction integrity and large
objects. It is called Object-Relation Management Database System(ORDBMS).

A ORDBMS system that is designed and implemented, as definition 1, as a
hybrid of relational database management and object-oriented technique. It will
support the ORSQL that is the super-set of SQL and is applied to those application
involved of complex datatype and complex query.

In this paper it is emphatically described that the object-relational DBMS sys-
tem developed by ourselves from the following aspects: storage mechanism and
access mechanism. And its query mechanism will be introduced in another paper.

2 Architecture of ORDBMS

We construct our ORDBMS in a two-layers architecture as shown in Figure 1.
The user-oriented layer mainly deals with the translation and process of languages.
Those are: Object-Relational query language (ORSQL), Object-Relation data ma-
nipulation language (ORDML) and Object-Relational data definition language (OR-
DDL). By parsing all kinds of users command statements, views transformation and
query optimization must be done. Then the executable codes will be generated.

¢ user-oriented layer
tools foruser query language parse
defining optimizer

executor

Y internal interface layer
storage and access mechanism
storage manager

v

| operating system 1

[data base |

Figure 1: Two layers architecture of ORDBMS

The internal interface layer is running on the storage manager. And the storage
manager must be a kernel that supports both tables storage and objects storage.

373

374

It realizes the transform from logic storage to physical storage by relying on the
page management, buffer management and memory management of its operating
system. The tasks of storage and access mechanism are to transform the upper
layer’s operations set to single object operation or single record operation.

3 Storage and access mechanism

3.1 Data Structure

The storage and access manager’s core is needed to have an efficient storage and
access data structure. It have to store relational information and manage efficiently
all kinds of objects information. For this, we proposed a new data structure which
can logically be divided into two layers as shown in Figure 2.

relationship
information
< layer

file name records]

i

object
[*.ef] [».ef]) [eet] oo ion
[24n] [+ [ae] ™

Figure 2: Two-layers data structure

The first layer is relational information layer. It is used mainly to store relational
information between object classes. Obviously, the information is in text and can be
represented by table structure and using B-trees index to carry out the storage and
access operations. The second is object data layer in which all kinds of heterogeneity
data, such as graphics, image, video, audio and the other object, are being stored.
In order to identify the datatype of the object’s attributes, we adopt the postfix
of a file name to represent the object class. Such as “.gra” is used to representing
graphics class and “.wav” is used to representing sound class.

In the relational information layer, the content of leaf node are some file names.
In the essentially, these file names will be used as pointers which are pointing to
the correspondent describe structure files (the postfix of file name is “.def”) and
related object instance data files (the postfix of file name is “.gra” and so on). By
this means, the two layers information is associated together.

3.2 Storage of class and objects

Class is only existing as the description of a group of objects. In our system, class
is stored as a specific object. We store.class and object instances separately. On
the other hand, one class always point out its object instances’ position. All classes
are being grouped as index structure. Their roots are kept in the database system
directory table. So when accessing an object and sending messages to an object,
we must find the correspondent description of class according to the root of class
index in the system directory table to do semantic interoperation and methods call.
The persistent storage format of class is shown as Table 1.

[Flag | Name | CID | Ref. times | Index 1,2 | Instance index | Super-class table |

Table 1: Storage format of a class

The CID field is used to storing identification of the class. If a class is used as
an attribute of another class or a super class, we call this class to be referenced one
time. The “Ref. times”, in Table 1, just is used for recording the times of the class
being refereed. : :

We store attributes and methods of a class in separated record blocks which are
indexed by.name of attributes and methods. The root of index is kept at the field
of “index 1”7 in Table 1. Additionally, the instances of this class are grouped below
the same index. And its root is stored in the “instance index” field in Table 1.

The storage format of object instance is the same way as the conventional stor-
age structure. One object may be stored in separated records rather than organized
it into a single file. By this means, although an object has very complex structure
and many layers, it still can be stored continuously or indexed by physical pointer
directly. In addition to storing object’s attributes, we also keep the CID which
the instance belonging to and the association with the other objects in our object
storage entities. The storage format of an object is as shown as Table 2. In this
format, OID means object identification.

Storage format of object instance:
[CID | Record length | OID | Attribute 1, ..., atiribute n | Associating field |

Format of attribute:
[Attribute No. | Data type | Length | Data |

Format of associating field:
[[CID | Associating type | OID |

Table 2: Storage format of object instance

3.3 Dynamic data types

Dynamic data type needs to have a specific data structure. We introduce it into
our ORDBMS mainly for supporting the inheritance of database table (included
function inheritance and data inheritance). And it also gives our ORDBMS certain
capability of dynamic schema modification.

{ Define type flag | Name | TID | Reference times | Index 1,2 [Instance index |

Table 3: Storage format of dynamic data type

When a dynamic data structure is used as an attribute of the others, we call

375

376

this dynamic data structure referenced one time. The reference times field in Table
3 is used to account the referenced times. And the TID means Type IDentification.

In a similar way to the storage format of class, we store attributes and functions
in separated record blocks. These records are indexed by the name of functions and
attributes. Roots of the two indexes are kept in the definition of dynamic data type.
Further more, the instances of the one dynamic data structure are grouped as an
index structure. The root of index is kept in the field of instance index in Table 3.
All of dynamic data type are grouped as an index and its root is kept in a index
directory table of dynamic data types that is named with system directory table.

Clearly, for introducing the capability of nested structure, the capability of
description complex object has been greatly enhanced. As we all know. The de-
scription one product is always a complex data layer-structured in the engineering
application. A product is composed of components. And the components are of-
ten composed of some sub-components and parts. In a database operation, whole
product data or whole component should be viewed as a unit of storage opera-
tion. And this requirement can be easily met in our ORDBMS system. But in the
conventional database system, this is the user’s work.

4 Generalized B-trees

Indexing structures and object representation are treated separately in spatial
database applications. There are three general approaches of indexing structures
for extended objects[5]. First of all, the transformation approach is for parameter
space indexing. The second one is nonoverlapping native space indexing approach.
A k-dimensional data space is partitioned into pairwise disjoint subspaces. These
subspaces then are indexed. The third one is the overlapping native space indexing
approach. The basic idea of this approach is to hierarchically partition the data
space into a manageable number of smaller subspaces. We use the first approach in
the system. That is, all entities are described by n vertices in a k-dimensional space
as 4 new data types described above. And they are indexed in an n.k-dimensional
space with a generalized search trees.

Previous search trees only support range predicates (<,=, >), so if you index,
say, a geographic information system with B-trees, you can only ask queries like
“Find all towns that population < D1”. While this query might mean something
(e.g- “<” could mean “near of a river”, Or “smaller area”), it’s not really a natural
thing to ask about some area.

Conventional B-trees index can efficiently be satisfied the requirements of rela-
tion information layer. So we define a Generalized B-Trees (GBT for short) code
that is basing on m-ways search tree structure with the user-defined method. It of-
fers tools for user to stick up new data type, new operators and new query functions
on the B-trees codes for satisfying the requirements of complex object information
layer.

A GBT is a balanced tree which provides “template” algoritms for navigating
the tree structure and modifying the tree structure through node splits and deletes.
Like all other (secondary) index trees, the GBT stores (key, RID) pairs in the leaves;
the RIDs (record identifiers) point to the corresponding records on the data pages.

Internal nodes contain (predicate, child page pointer) pairs; the predicate evaluates
to true for any of the keys contained in or reachable from the associated child page.
This captures the essence of a tree-based index structure: a hierarchy of predicates,
in which each predicate holds true for all keys stored under it in the hierarchy. We
define the GBT to have the following properties:

1. Procedure GBT has parameters: less_than, equal, greater_than, and KT.
Where the less_than, equal and greater_than are used to define comparison
operators. KT is used to define the data type of the key Ki.

2. It has at most m sub-trees and its root has the format as:
Ao, K, A1, Kz, Az, ooy Ky A

where A;(0 <1 < n < m) is the pointer that points to its sub-tree
3. K;isless_than K;1;,1 <:i<n.

4. If the keys in a node N are arranged in their linear order, K, K3, ..., Kp,
then there is associated linear order among the sub-trees, 4g, 4;, 4, ...,
Am-1, Ay of N such that:

o every key in Ap is less_than Kj,
o every key in Ay, is greater_than K,,, and

o for 1 <1 < m, every key in A; lies strictly between K; and K;;;.
5. Sub-tree A4;(0 < i < m) is a generalized m-way search tree.

The keys K; in the GBT are not integers like the keys in a B-tree. Instead,
a GBT key is a member of a user-defined class, for example, as defined above,
POINT, and represents some property that is true of all data items reachable from
the pointer associated with the key. To make a GBT work, we just have to figure
out, through assigning parameters to it, what to represent in the keys and what to
do in the comparison operators .

.4.1 User-defined predicates

Because the data types of the keys are varying, the comparison operators “less_than”,
or “equal” or “greater_than” that were mentioned in the procedure GBT as its pa-
rameters are not to be surely the standard predicates “<”, “=" nor “>”. It may be
a set of user-defined predicates to correspond each user-defined data type. When
defining a new data type, a set of operator functions for each new type must be
defined. For the geographic application, the user-defined elements are defined to im-
plement the comparison operations about the data types POINT, CURVE, AREA
and VOLUME in GBT, as listed as in Table 4.

For example, the data type POINT must have several comparison operators as
following: “North_of” (to replace the parameter less_than in the GBT), “South.of”

377

378

Comparison Operator Data type
In B.trees <, =,> Integer
User-defined North_of, Same, South.of POINT
User-defined | Shorterthan, Equal, Longer.than CURVE
User-defined | Smaller than, Equal, Larger than | AREA, VOLUME

Table 4: User-defined methods for geographic application

(to replace the operator greater_than) and so on. To base it upon geography knowl-
edge, we can define comparison operators function “North_of”, “Shorter.than” as
following: When defining a new data type, a set of operator functions for each new
type must be defined.

/* two parameters that have data types POINT*/
Function North_of(point_1, point_2: POINT)

{ .
/*to suppose that the positive direction of the
axis z of coordinate system is north */.
if(point_1.x > point.2.z)

then return (true)

else return (false)

}

/*two parameters that have data types CURVE*/
Function Shorter.than(line.1, line2: CURVE)

a = length(line.1);
b = length(line_2);
if(a < b)

then return(true)
else return(false)

}
Function length(L:CURVE)

/*to obtain the vertex number of the curve*/
N = L.n;
sum = 0;
for i=1 to N-1

sum = sum + distance(pi+1 - pi);
return(sum); :

}

When making a index about a key, the GBT first examine the data type of
the key. For example, the data type of the key is POINT. Then the GBT selects
the comparison operators “North.of”, “Same” and “South_of” from the line of the
POINT in the table 4. The three comparison operators are used to replace the
“less.than”, “Equal” and ”Greater_than” correspondingly in the m-ways search

tree procedure. So the search tree indexes points according to the user-defined
functions “North_of”.

5 Conclusion

We combine relational DBMS technique with object-oriented technique together
and to develop a two layer structure and storage mechanism of object class. It
can process the information about complex data type and have the capability of
dynamic schema modification. Because of the system directory table structure, the
ORDBMS can support any user defined data and any processing function. In one
word it can perfectly meet some specific database application demands.

References

[1] Lougie Anderson, etal, Looking for the objects in object-relational DBMSs,
ACM SIGPLAN Notes, Vol.32, No.12, 1997, pp 93-102.

[2] Don Chamberlin, Using the new DB2: IBM’s object-relational Database sys-
tem, 1996, Morgan Kaufmann Publishers, Inc.

[3] Hjelsvold, R. and Midtstraum, R., Modeling and Querying proceedmgs of the
20th VLDB, Santiago, Chile, 1994.

[4] Shi-guang Ju, Visual methods for the software and tools of DBMS, Computer
Engineering & science, Vol.20,No.A1, 1998, pp129-132.

[5] Elisa Bertino, and Beng Chin Ooi, The indispensability of dispensable indexes,
IEEE Transactions on knowledge and data engineering, vol.11, No.1, 1999
ppl7-27.

[6] Michael Stonebraker and Paul Brown, Object-relational DBMSs, Morgan
Kaufmann Publishers, 1998.

[7] Anil Kumar,Vassilis J. Tsotras and Christos Faloutsos, Designing Access Meth-
ods for Bitemporal Databases. IEEE Transactions on Knowledge and Data
Engineering, Vol.10, No.1 1998 pp1-20.

[8] Volker Gaede and Oliver Gunther. Multidimensional access methods, ACM
Computing Surveys, 1998, Vol.30 No.2.

_[9] J.Hellerstein, J. Naughton; and A.Pfeffer, Generalized search trees for database
systems. In proc.21st Intl conference on very large databases, Zurich, Switzer-
land, pp562-573, Sept. 1995. :

379

