DataBlade Extensions for INFORMIX-Universal Server

Michael A. Olson
Informix Software
mao@informix.com

Abstract

In September of 1996, Informiz Software released
the first version of its new object-relational database
management system to developers and partners. This
system, called INFORMIX-Unwersal Server, supporied
a new way of building and deploying database ap-
plications. Developers could write software modules,
called DataBlade extensions, that extended the database
server with knowledge of new types and operations.
This paper describes the architecture of INFORMIX-
Universal Server and how it supports DataBlade ez-
tenstons. The paper describes the way that DataBlade
developers and application developers interact with the
server. Finally, it describes a set of DataBlade exten-
stons avatlable for the server at the end of 1996.

1. Introduction

In September of 1996, Informix Software released
the first commercially-available version of INFORMIX-
Universal Server (IUS) to partners and developers.
1US 1s an object-relational database management sys-
tem (ORDBMS). It is an enhancement of Informix’s re-
lational product. It allows software developers to write
code that extends the database system to manage new
data types, and to provide new operations on existing
data types. This code can run in any of a number of
address spaces, including in the address space of the
database server itself. These extensions can be writ-
ten by Informix, its customers, or third parties, and
operate in the same way, regardless of origin.

The software modules that enhance TUS are called
DataBlade extensions. To date, about thirty Dat-
aBlade extensions to IUS have been completed by
Informix and third parties, and many more are in
some stage of development. Informix believes that the
database server market will change dramatically as a
result of the appearance of DataBlade extensions, and
has invested heavily in the technology to support them.

1063-6390/97 $10.00 ® 1997 IEEE

143

From Informix’s point of view, DataBlade exten-
sions have several advantages over the middle-ware and
client-side systems that are common today. First, the
DataBlade modules are snap-in components, and are
easy to write and use. Second, the components n-
teroperate easily, because the database server and the
database user interact with them all in precisely the
same way. Third, allowing extensions to run directly
in the database server, if desired, can make applications
much faster. No data copying is required.

This paper describes, in some detail, how DataBlade
extensions are designed and built, and how IUS finds
them and uses them while executing user queries. The
paper begins with a fairly high-level discussion of the
architecture of IUS, and how the architecture supports
DataBlade deployment. The next section covers the
various ways that DataBlade code interacts with the
database server, and what that means for DataBlade
developers. After that, the paper examines IUS and
DataBlades from the point of view of application de-
velopers. Finally, it briefly describes the variety of Dat-
aBlade extensions supported by TUS at the end of De-
cember, 1996.

2. TUS Architecture

INFORMIX-Universal Server is an enhancement of
Informix’s core relational product, the On-Line Data
Server. Users who choose to do so can ignore all
available DataBlade products and run IUS as a full-
function, high-performance relational engine. How-
ever, the real value of IUS is its ability to manage new
kinds of data in new ways, and DataBlade code is the
key.

IUS contains a number of components that al-
low it to find and use DataBlade code on demand.
This section describes the architecture of INFORMIX-
Universal Server at a high level, and introduces the
important components of a database management sys-
tem.

2.1. Conventional RDBMS components

The major vendors of relational database manage-
ment systems all organize their systems in the same
way. Naturally, differences in implementation can dra-
matically affect the speed or feature set of any partic-
ular vendor’s product, but all such systems rely on the
same services to do their jobs.

The major components of a relational database
management system are a query parser, a planner and
optirnizer, an execution engine, and a collection of ac-
cess method code. There are a number of other impor-
tant system components, but these four are the impor-
tant ones for the current discussion.

2.1.1 The query parser

When a query arrives at any relational server, the query
string is delivered to the query parser. The parser con-
verts the string into an internal representation of the
query. This internal representation converts constants,
type names, table and column names, operators, and
function names that appear in the query string into
values that can be more conveniently manipulated in
the computer’s memory. Typically, a parser produces
a tree data structure that captures the request of the
user. The parse tree ignores differences in white space,
comnmenting, and so forth, that can make two identical
queries look different.

2.1.2 The planner and optimzer

After parsing, relational systems pass the parse tree to
a module that does query planning and optimization.
This code is responsible for picking the best possible
strategy for satisfying a user query. For example, a
query that searches a corporate database for all em-
ployees who make twenty thousand dollars a year may
be satisfied in a number of different ways. The system
could scan the entire employee table, comparing each
salary to the desired value. Alternatively, if there is
an index on the salary column of the employee table,
the index can be consulted, and will produce exactly
those records that qualify. Which of these strategies
is best depends on the comparison in use, the amount
of data that is likely to be returned, and the perfor-
mance characteristics of the system running the query.
The planner and optimizer consider the variables and
choose the best query execution plan.

2.1.3 The query executor

Once the optimizer and planner are finished, the query
execution plan is handed to an execution engine for

144

evaluation. That engine iterates over all the data ac-
cording to plan, and produces answers for the user. It
s the query executor that performs restrictions, pro-
jections, and joln operations.

2.1.4 The access methods

The query execution engine needs access to data stored
in tables and indices. Most systemns use an abstraction
called an access method to do this. Simply speaking, an
access method is the code that understands the layout
of data on disk, and knows how to fetch and update the
data while keeping the layout consistent. For example,
a tree-based indexed access method like a B-tree stores
records in groups on pages, and must keep inter-page
pointers consistent when updating the index.

2.2. Support for extensibility

Because INFORMIX-Universal Server is built on the
On-Line Data Server relational code base, it has all the
modules described above. However, IUS makes several
substantial changes to some of those modules to make
DataBlade code useful.

The biggest difference between IUS and conven-
tional relational engines is that 1US does not hard-code
knowledge of a fixed set of data types into the engine.
For performance reasons, most relational vendors have
built special-purpose code for handling integers, float-
ing point numbers, and character strings into their en-
gines. As aresult, these systemns cannot operate on new
data types, because the system does not have support
for them built in.

IUS includes built-in knowledge of the popular rela-
tional types, to guarantee good performance. However,
when confronted with a data type or function name it
does not recognize, the system will consult database
tables to find code that supports the type or the re-
quested function. All known types and functions are
described in database tables. Adding a new type or
function to the system simply requires writing some
software and registering its presence in the tables.

The next several subsections describe the changes

to various relational modules in IUS to support Dat-
aBlade code.

2.2.1 Parser changes

The main change to the query parser is that 1t looks up
type and function names in tables whenever necessary.
When confronted with a name that had not been built
into the system, the On-Line Data Server would raise
an error. [US, in contrast, searches the systemn tables

to determine whether or not the type or function is
supported by DataBlade code.

As a result, a legal parse tree can refer not just to
the types and operations built into the server when 1t
was shipped, but to any type or operation that has
been defined since.

2.2.2 Planner and optimizer changes

There are a number of important changes to the plan-
ner and the optimizer. In general, running user-
supplied code during the execution of a query can dra-
matically affect the space and time the query requires.
The optimizer and the planner must consider these
variables when they choose a query plan.

DataBlade developers can specify the cost of the
functions that they write at development time. During
query planning, [US will consider these costs, along
with its knowledge of data distributions, number of
records likely to be touched, and so forth, to produce
a good execution strategy.

2.2.3 Function resolution and execution

During query execution, IUS may need to run a num-
ber of functions over data stored in tables. Some of
these functions may be built into IUS, and some may be
supported by DataBlade code. From the user’s point
of view, these two cases are indistinguishable; the SQL
looks the same, regardless of who wrote the supporting
code. TUS must decide which case applies, and must be
able to find, load, and execute DataBlade routines on
demand, exactly as if they were built into the engine.

Function resolution and execution in [US is handled
by a new module, called the function manager. The
function manager consults the table of functions that
are known to the system, and decides whether the de-
sired routine is built into the engine or is provided by
a DataBlade extension.

If the function is built into the engine, it is called
directly, and the answer is returned to the query ex-
ecutor.

If the function is defined by a DataBlade extension,
then the function manager decides how to call the rou-
tine. DataBlade code can be written in a number of
different languages, and the calling strategy depends
on the implermentation language and the calling con-
ventions imposed by that language.

To eall DataBlade code written in C, the funection
manager uses the operating system’s support for dy-
namic linking to move the DataBlade code into the
address space of the server process. Another operat-
ing system-dependent call returns the address of the

145

function of interest. Given that address, the function
manager can call the routine directly.

To call DataBlade code written in Java, the server
reads the code into memory and invokes the Java Vir-
tual Machine (which itself operates as a DataBlade ex-
tension) on the desired function.

The 1US function manager is designed to take ad-
vantage of extensibility itself. It i1s easy to add support
for new languages, like C+4, or remote method invo-
cation services, like CORBA, by writing a new kind of
DataBlade extension called a language manager.

2.2.4 Access method interfaces

One final important difference between 1US and rela-
tional products is the way in which the INFORMIX-
Universal Server interacts with access method code.
As described earlier, an access method is the code
that manages data storage in tables or indices. Ac-
cess method code can control the layout, storage, and
retrieval of records. B-tree indices and ordinary tables
are two examples of access methods familiar to rela-
tional system users.

Relational systems hard-code support for a small
number of access methods, and only support storage
and retrieval of a fixed set of data types. It is impos-
sible for ordinary developers to add a new kind of in-
dex to relational systems, because those systerns have
no idea how to open, search, and update the index.
In addition, relational systems cannot store new data
types in existing indices and tables, because the ac-
cess method code itself hard-codes support for a small
number of data types.

[US diverges from relational systems in two ways.

First, there is an abstract access method interface
that allows the system to use any access method. This
means that developers can define new ways of storing
tables or managing indices, and IUS can take advantage
of them for storage and retrieval of data. A number of
current and future DataBlade developers are writing
access methods for [US.

Second, access methods are themselves type-
extensible. TUS introduces an abstract way of storing
and operating on values in an access method. The ac-
cess method code asks the system for the supporting
routines for a particular data type, and then uses those
routines to operate on valuee of that type. Thic means
that a DataBlade developer can register routines that
allow values of a new type to be searched for using B-
tree indices, or any other indexed access method that
the developer wants to make available.

3. DataBlade Development

The previous several sections have described Dat-
aBlades from the point of view of the INFORMIX-
Universal Server. A much more interesting view is that
of actual or potential DataBlade developers: How must
developers write their code to support execution in the
Informix server?

There are two ways to consider the interaction be-
tween the server and DataBlade code. The first is the
way in which the server will call DataBlade functions,
and the interfaces that the developer must provide.
The second is the way that the DataBlade code can
call server routines, and the interfaces that the devel-
oper may use.

3.1. The DataBlade Developers’ Kit

When developers define new data types for IUS, they
must declare a suite of support functions required by
the server to handle byte swapping on heterogeneous
networks, conversion to and from textual representa-
tion, and several other operations. In general, these
routines are fairly simple, but tedious to write. Their
formal parameters are the same for all new types.

In addition, when a developer creates new routines
that are callable from SQL, the supporting C or Java
code must, conform to the calling conventions imposed
by 1US. Again, the conventions are simple, and the
prototypes are predictable.

In order to speed up development of DataBlade
code, Informix provides a tool called the DataBlade
Developers’ Kit. This kit is a collection of GUI tools
for defining types, functions, access methods, and other
database objects, generating code, and packaging Dat-
aBlades for release and installation.

The DataBlade Developers’ Kit automatically gen-
erates the supporting routines, including routine bod-
les, for new data types. As a result, a new type de-
veloper need not define the basic support routineg re-
quired by 1US. The developer can concentrate on writ-
ing the functions that operate on values of the new
type.

In addition, the Kit automatically generates files
that contain function prototypes for the new routines
defined by DataBlade extensions. Developers need only
fill in the routine bodies.

The effect of the Kit 1s to isolate the developer from
having to learn the calling conventions and interfaces
in use by IUS for calling DataBlade code.

146

3.2. The DataBlade API

The second important suite of interfaces for Dat-
aBlade developers is the set of routines that are callable
inside the engine to perform important operations.

1US includes its own memory manager, file manager,
and other services. There is a public API for developers
who need these services. This API is called the Dat-
aBlade API. Developers who want to run DataBlade
code in INFORMIX-Universal Server should use these
routines, rather than operating system calls.

The API is broken into groups of routines that han-
dle resource allocation (including memory and file man-
agement), query execution and result binding, error
detection and reporting, and data conversion support
for transmission of values between different CPU ar-
chitectures, among others. Whenever the DataBlade
API offers functionality that is also provided by op-
erating systems, the APl mimics the arguments and
return types defined by POSIX. The intent is to pro-
vide developers with a familiar set of interfaces that
operate well inside the database server.

Developers need only pay attention to the API when
they need to interact with the database server or do re-
source allocation. Generally speaking, no changes are
required to code that does computation. DataBlade
routines look just like routines that appear in appli-
cation or library code. No special programming skills
are required to write DataBlade functions or to use the

DataBlade API.

4. Application Development

Programmers that develop client applications
against the INFORMIX-Universal Server can use the
same tools and techniques that they do when they
write applications against strictly relational database
servers, including Informix’s On-Line Data Server.

When a DataBlade extension is registered for use
at a customer site, the registration code runs a col-
lection of SQL scripts that update the database cata-
log with its new types, functions, and access methods.
That process extends the SQL-3 query language with
the type, function, and access method names that the
DataBlade code provides. As a result, the interface to
the DataBlade extension is the same as the interface to
the rest of the database services. Users write queries
in SQL, and IUS executes them.

All of Informix’s programming tools have been mod-
ified to handle extended SQL-3. In particular, devel-
opers who write C++ code, use SQL embedded in a
programming language, or other application develop-
ment tools can continue to do so with 1US.

Applications may mix and match data types and
functions defined by multiple DataBlade extensions.
The database server correctly identifies and invokes the
required support code on demand. The application de-
veloper need not be aware of which features are built
into the server, or which are provided by which Dat-
aBlade extension.

When an application executes a query that returns
values of a new data type, the server will deliver the
results in either textual or binary format, just as it
does for conventional types like integers and floating
point numbers. The values are delivered in the byte
order of the client. DataBlade developers, application
developers, or other third parties can also supply client-
side components like ActiveX controls or Java applets
to handle display and manipulation of values on the
client.

5. DataBlade Extensions for IUS

As of December 1996 (which was the publication
deadline for this paper), twenty-nine DataBlade exten-
sions were shipping for INFORMIX-Universal Server.
Almost all of these products were developed by third
parties, using the DataBlade API against early de-
veloper releases of TUS. The functionality and feature
sets of the products vary widely, but all are interesting
products that provide sophisticated services not avail-
able in conventional relational databases.

The next several sections break that initial suite of
DataBlade extensions into functionally similar groups,
and describe some of the features provided by each
group. In practice, there 1s no clear demarcation among
groups. Text search, for example, is useful on the Web.
However, for convenience in discussing features, the
categorizations make some sense.

The extensions are currently in use by a variety of
end users and systems integrators building applications
on top of IUS.

5.1. Text and document management

Several DataBlade extensions provide text search-
ing and document management support. These prod-
ucts do high-speed searching for documents, returning
those that match query criteria in ranked order, as well
as conventional document management, including revi-
sion control and tracking, access control, and so on.

The text offerings are generally used as horizon-
tal technology. They apply to no problem domain
in particular. Rather, most customers who purchase
INFORMIX-Universal Server have documents they

147

want to store, search, and retrieve, and want to inte-
grate that service with the rest of their data processing
strategy. As a result, the text DataBlade extensions are
extremely popular.

5.2. Digital media

There is a large number of DataBlade extensions
that manage popular digital media types like video,
audio, and still images. These DataBlade extensions
handle not just storage and retrieval, but also content-
based search of the media types. For example, a user
can submit a sound clip as an example, and scan
the database for similar sound clips as part of an
SQL query. For the time-dependent types like audio
and video, DataBlade vendors have built interfaces to
streaming storage servers, as well as providing man-
agement of values stored directly inside the database
system.

These DataBlade extensions are typically used in
two different ways. First, every Web-based application
includes multimedia data, and so most Web applica-
tions built on top of IUS include a collection of digl-
tal media DataBlade extensions. Second, there are a
number of specialized markets for digital media man-
agement for which IUS products are being developed.
An example is high-end video production, where edi-
tors would like an intelligent storage system that per-
mitted content-based retrieval of videos and access to
high-performance video storage systems.

5.3. Web, Internet, and Intranet

In addition to storing and searching documents,
videos, audio clips, and still images, Web-based appli-
cations need special services from the database system.
Several DataBlade extensions have appeared to address
that need.

The extensions that are focused on the Web gener-
ally handle electronic commerce, including secure, reli-
able transrnission of offers and bids, encryption of data
to be transmitted across insecure networks, authenti-
cation, access control, and tracking.

5.4. Financial services

There is a small, but important, group of DataBlade
extensions that provide special services for the financial
markets. In general, the efficient storage and retrieval
of stock ticker information, aggregation and interpre-
tation of those values, and interfaces to real-time data
feeds are important for these markets.

5.5. Data warehousing

Several DataBlade vendors have built extensions for
sale to customers with large data warehouses. The Dat-
aBlade vendors and their customers build data mining
applications on top of 1US running these DataBlade
extensions. Services provided include duplicate detec-
tion and reporting in very large databases of name and
address information, aggregation and interpretation of
large volumes of data, and statistical analyses of raw
or surmmary data.

5.6. Spatial data handling

Another important market for developers of TUS
DataBlade extensions is the geographical information
services sector. These developers build tools that store,
search, retrieve, and interpret spatial information. For
example, most companies store address information for
their employees and customers, and most would like to
search their databases to find customers who live near
new stores, or employees who live near each other for
ride sharing progrars.

A large number of companies have developed Dat-
aBlade extensions for spatial data. These extensions
typically do address geocoding (turning an address into
a latitude and longitude for location on a map), dis-
tance, containment, or overlap searches, and access
methods that support fast spatial searching.

Like the vendors of text DataBlade extensions, the
spatial vendors believe that they provide horizontal
technology. No single market is a focus for these ven-
dors. Rather, many applications, including data ware-
houses, Web-based catalogues, financial markets, and
others want to augment their databases with spatial
capabilities.

6. Conclusion

INFORMIX-Universal Server extends the architec-
ture of relational systems in a number of conceptually
simple but important ways. As a result, IUS is able to
load and execute DataBlade extensions on demand to
search new kinds of data for new properties of interest
to users.

DataBlade extensions can be developed by anyone,
and can run in the server, in the client, or in a middle-
ware application server. This provides developers and
customers with the flexibility to tune their system for
performance and manageability when they develop new
applications.

Developers of DataBlade extensions can use
Informix-supplied tools, like the DataBlade Develop-

148

ers’ Kit, to write software easily that can run in the
database server. TUS defines a simple suite of inter-
faces, called the DataBlade API, for use by DataBlade
developers. As a result, DataBlade development is no
more complicated than conventional application devel-
opment.

Informix’s customers can purchase IUS and any col-
lection of DataBlade extensions, and can install and ad-
minister them as a unified system. Application devel-
opers interact with DataBlade extensions in the same
way that they interact with the rest of Informix’s data
management services. They write SQL queries using a
variety of development tools, and have a wide range of
choices for client-side manipulation and display of new
data types.

The ease with which DataBlade extensions can be
developed, combined with the large new markets that
they allow software vendors to address, have produced
an enormous number of DataBlade extensions for TUS
in very short order. As of December 1996, twenty-nine
were shipping, with many more in development.

Informix believes that the DataBlade model repre-
sents the future of database management, and has in-
vested heavily in architecture and business support to
encourage DataBlade development. Informix is plan-
ning for thousands of new DataBlade extensions to ap-
pear over the next few years.

