Towards a Spatio-Temporal OQL for the Four Dimensional Spatial
Database System Hawks

Susurﬁu Kuroki
Akifumi Makinouchi

Kensaku Ishizuka

Department of Intelligent Systems
Graduate School of Information Science and Electrical Engineering
Kyushu University
Fukuoka 812-81, Japan
tel: +81-92-642-3883, fax: +81-92-632-5204
e-mail: kuroki@is.kyushu-u.ac.jp, ishizuka@db.is.kyushu-u.ac.jp, akifumi@is.kyushu-u.ac.jp

Abstract

This paper discusses a spalio-temporal object query
language(OQL), which treats spatial data and tempo-
ral date in the same way. Here, we address spatial,
temporal and spatio-temporal predicates and operators
and then show the queries in the spatio-temporal OQL
and the ones in the internal expression of the spatio-
temporal database system Hawks. This language is go-
ing to be implemented in INADA/ODMG, which is
a database programming language based on C-++ and
provides C++ bindings of the ODMG-93, the Object
Database Standard.

The expressions, in which spatio-temporal objects
are defined as the figures of the four dimensional topo-
logical space resulted from the direct product of the
three dimensional space and time, are used to relrieve
the spatio-temporal objects which satisfy the condi-
tion.

1 Introduction

A spatial query language is an essential tool for
interacting with spatial databases. A spatial query
is to retrieve spatial data, which describe information
that pertains to the space occupied by objects in a
database. Spatial data are, for example, points, lines,
rectangles, polygons, surfaces, and volumes.[l] Spa-
tial queries posed to map databases are often range
queries, which are to retrieve spatial data in the space
spanned by the region given by a user.

A temporal query language is also an csscntial tool
for interacting with temporal databases. A temporal
query 1s to retrieve temporal data, which are related
to the time during which objects exist in a temporal
database. Temporal data are time instances and time
intervals.

Spatial query languages and temporal query lan-
guages are often studied and used in seperate ways.
However, it is time to study them in an integrated way,
because new database applications such as computer
animation and virtual reality use spatio-temporal

0-8186-8147-0/97 $10.00 © 1997 IEEE

queries to retrieve spatial objects which, for exaraple,
intersect other spatial objects. Consequently, tempo-
ral sequences of spatial querles are asked to databases
when the spatial aspects and temporal aspects are not
stored in an integrated way. This is often the case
with the systems that store spatial data in a temporal
layer structure. In such systems, when spatial objects
in the condition of a query change thier locations as
time passes, the temporal sequence of the outputs of
the queries is also time-dependent and obtained by in-
tegrating the answers of the gpatial queries and tem-
poral queries after the each answers are obtained.

However, the integration of the answers 1s a very
tedious procedure and we are now designing and im-
plementing the spatio-temporal data representation
model Universe, which gives users to model time-
varying spatio-temporal objects in an unified way so
that the integration process is avoided.

In order to process spatio-temporal queries in an
integrated way, we have started designing and imple-
menting the four dimensional spatial database system
Hawks[5, 6]. It is a spatio-temporal database sys-
tem and to be implemented in INADA object-oriented
database programming language(2]. The database
is based on the spatio-temporal data representation
model Universe[5]. The model provides users an uni-
form way of defining, modifying and querying spatio-
temporal objects. In the next section, we explain the
classes and methods of the spatio-temporal objects so

as to show the spatio-temporal representation of the
niverse.

2 Representation of Spatio-Temporal

Objects in Universe

The model Universe uses the mathematical con-
cept of simplices and simplicial complexes to describe
spatiotemporal objects[3]. Here, we assume that the
spatial objects are in a three dimensional Euclidean
. 3 : 3
space R°. They may move in R° and may change
their topologies, too.

Y 1 Y
mapping
—
0 . ol/ .- .
/ time t(0) - >
b t=t (0) X

Figure 1: Representation of an instantaneous spatial
object. A spatial object in R® at time t(0) is mapped
into a topological figure in T.

To model the motion of spatial objects, we intro-
duce topological space T(x, y, 2, t) which is the direct
product of the spatial coordinates (x, y, z) € R® and
the temporal coordinate t.

First, a spatial object O € R® at time in-
stance t is mapped into the topological space T
by extending its coordinate (x, y, z) to (x, v,
z, t). For example, a triangle Trianglel in R®
at time ¢ to whose vertices are Py(zg,yo,20),
Pi(z1,91,21), Pa(22,y2, 22) is represented as a triangle
Trianglel™ in T, whose vertices are Py (x, o, z0,%0),
Pr(x1,91, 21,), Py (za,y2, 22, to)(see Figurel).

Then, when the spatial object O in R moves dur-
ing the time interval I[tg,¢1], its movement over the
interval I induces its own figure STO in T. Let us de-
note the object in R at time t and its representation
in T as O(t) and O*(t), respectively. Then the fig-
ure STO is deined as U, ¢y, 4,) O™ (t), the union of the

object O*(t) in T over time interval L.

To represent such kinds of objects in T, we use
simplicial complexes. A simplicial complex is a fi-
nite set of simplices such that if there exists a pair
of simplicies, the intersection of the two is their
faces, which are spanned by a subset of their own
vertices. A simplex is the minimum convex ob-
ject whose vertices are linearly independent. In-
stances of simplices are points(0-dimensional), lines(1-
dimensional), triangles(2-dimensional), tetrahedra(3-
dimensional) and 4-simplices. They are primitive ob-
jects that are used to construct topological figures in
T. They play their roles similar to the primitives used
in constructive solid geometry. Figure3 and Figure4
illustrate instances of simplices and a simplicial com-
plex, respectively.

In Universe, there are three kinds of spatial data
classes to represent points, simplices, and complexes.
The structure of the classes are given in the ap-
pendix A. The class Complex is used to define spatio-
temporal objects which are composed of simplices
which are the primitives of spatio-temporal objects.
Thus, an instace of the class Complex has member-
ship relationship of the primitives. Also, an instace
of the class Simplex has membership relationship of
its own vertices. An instace of the class Point has its
location in the topological space T. A point object is

143

time t(1)
v /'/i\
0]
/ time t(0)
X
1 mapping
tll
t]
t=t (1)
o

t=t (0

Figure 2: Representation of a time-varying spatial ob-
ject, 1.e. a spatio-temporal object. A spatio-temporal
object in R? is mapped into a topological figure in T.
Here, a translating triangle over time interval [t(0),
t(1)] is illustrated.

e

l-simplex 2-simplex 3-simpex

Figure 3: Simplices. When the dimensionality of
a simplex i1s to be explicitly expressed, the term k-
simplex is used where k is the dimension of the sim-
plex.

‘1

Figure 4: An instance of simplicial complexes. A sim-
plicial complex does not have to be continuous. In
addtion, a simplicial complex does not need to be
composed of the simplices of the same dimension. In
this case, lines(1-simplices), triangles(2-simplices) and
tetrahedron(3-simplex) are the member of the set.

linked bidirectionally to the simplices which it is one
of the vertices of. Similarly, a simplex object is bidi-
rectionally linked to some instaces of class Complex
based on its membership relationship.

3 Spatio-Temporal Queries in OQL

In this section, we give some examples of spatial,
temporal, and spatio-temporal queries represented in
OQL[4] using spatial, temporal, and spatio-temporal
predicates, and operators. OQL is the object database
standard and the database programming language IN-
ADA provides OQL interface. In the following ex-
amples, we use spatial predicate intersect(), tempo-
ral predicate overlap(), and spatio-temporal predicate
collide() to describe spatial, temporal, and spatio-
temporal relationships. The semantics of the predi-
cates intersect{) and overlap() are same as the tradi-
tional ones. The predicate collide() is true when the
two objects meet in some place at some time. These
predicates are to be designed and implemented to help
users to define typical spatio-temporal queries in the
same way as they do with spatial query languages and
temporal query languages.

1. Query 1

First of all, an example of spatial queries is ad-
dressed. The example is a range query and it
retrieves spatial objects such that they intersect
a region rangel: [zo,21] X [yo,%1] X [20, 21] in R®
specified by the query. This query is expressed in
OQL as follows. Here, Spatio TemporalObjects is
a set of spatio-temporal objects, which have Uni-
verse representation. Note that this query does
not specify temporal condition at all hence the se-
mantics of the query is to select every objects that
intersect with the region rangel at some time.

select ¢
from ¢ in SpatioTemporalObjects
where c.intersect(rangel)=true

2. Query 2

The second one is an example of temporal queries.
The query retrieves spatial objects such that they

exist at least one moment of the time interval
range? [tg,t1]. Here, we use the temporal pred-
icate overlap() to specify a temporal condition.
The semantics of the query is to select every ob-
jects that exist at least one moment during the
time interval range2 in some place.

select ¢
from ¢ in SpatioTemporalObjects
where c.overlap(range2)=true

3. Query 3

The third one is a kind of spatio-temporal
queries and selects objects which intersect a
time-invariant range! during the time period
range?2 [to,t1]. Here, the spatial operation
intersection{object!) and temporal operation
time_interval(object2) return the intersection
of ¢ and object! and the time interval of object2,
respectively.

select ¢
from ¢ in SpatioTemporalObjects
where time_interval(c.intersection(ran-
gel)) .overlap(range2)=true in
(select x
from x in SpatioTemporalObjects
vhere x.intersect(rangel))

4. Query 4
The last one 1s also an instace of spatio-temporal
queries. This selects spatio-temporal objects such
that they collide spatio-temporal object range3,
which moves in R® during its overall lifetime in-
terval [tg, ¢1]

select ¢
from ¢ in SpatioTemporalObjects
where c.collide(range3)=true

4 Translation from Spatio-Temporal
OQL to Universe OQL

In this section, we give a rough sketch of a query
mapping module. This module maps the Spatio-
Temporal OQL queries into the Universe OQL queries,
that is, the ones whose expressions are in the the form
of the predicates, operetaions of the Universe data rep-
resentalon written in the C++-based database pro-
graming language INADA. In order to illustrate the
functionality of the preprocessor, we address the rela-
tion between their inputs and outputs of the module.

We have shown four kinds of the spatio-temporal
queries in the previous section and we use them as
examples of the inputs.

Spatial query processing in Hawks consists of three
procedures as follows(Figure5).

Preprocessing procedure is creating four dimen-
sional objects in T by mapping spatial, temporal,
and spatio-temporal conditions of the queries in R3

UniverseOQL

Translator
. (Pre-
Spatio- processing)|{ Universe
Temporal oQL
OQL »
AN
Query Query
Processing Processing
in R*R*R in R*R*R*T
and T
Answers (’
in Answers
R*R*R in
and T Output R*R*R*T
(Post~
processing)

Figure 5: Spatio-Temporal Query Processing in
Hawks
t
T(1) AN
/ e / o
P

Rangel* in
R*R*R*T

Rangel in
R*R*R

Figure 6: Query regionl RANGE1

into the four dimensional objects in T. Assume that
the spatial domain and the temporal domain are
[Xo, X1] x [Yo, V1] X [Zy, Z1] and [T, T3], respectively.
In such a case, the condition in the Query I is trans-
formed into the region RANGEI: [zg,21] X [y, %1] X
[20,71] % [To, T1] because the condition has nothing to
do with the temporal dimension. Similarly, the con-
ditions in Query 2, Query 3, and Query 4 are trans-
formed into RANGE?: [Xo,Xl] X HYO, fZO,Xl] X
[to, 1], RANGES: [2¢,21] X [y0,1] X [20, 21] X [to, t1],
and RANGEY: t€(to,tr] TATYGES” (z,y,2,t), respec-

tively. These mappings are illustrated in Fugure6 and
Figure?.

According to this transformation, the Query k(k
=1, 2, 3, 4) in the previous section are transformed
into the same representation in Universe OQL, where
the parameter RANGEF is query-dependent(Figure8).
Semantics of the queries are quite different from each
other, but their expressions in Universe OQL are the
same. The differnece of the semantics is mapped into
the difference of query regions Rangek. Therefore, we
can treat spatial query, temporal query, and spatio-

145

tl

AN

R*R*R

Figure 7: Query region RANGE4. Temporal changes
in query regions such as moving objects, topological
changes such as split, fusion, metamorphoses are ex-
pressed in the shape of the figures in T.

Query k

Set<Ref<Complex>> COMPLEXES;
Ref<Complex> Rangek;
oql(answer, "select ¢

from ¢ in COMPLEXES
where c.intersect($ik)
Rangek) ;

= true",

Figure 8: Universe OQL

temporal queries in the same way in which the con-
ditions of the queries are expressed with generalized
predicates and operators provided by the Universe.

Thenr Universe OQLs are processed with four di-
mensional computational geometrical methods, which
are performed with the predicates and operators pro-
vided by the Universe.

After that, the result are postprocessed with the op-
erators such as cross_section() and projection()
to interprete four dimensional objects from the users’
point of view, apart from the Universe represen-
tation. The spatio-temporal operators such as
cross_section() and projection(), which calcu-
lates the cross_section() in R® of the object by
intersecting the object and a plane 7 : t = o in T
to know the location and shape of the objects at time
to, and union of the cross_section(t) in R® over
time interval of the object, respectively. The operator
cross_section is similar to the snapshot operator in
temporal databases, but the operator cross_section
can be applied to any moment, not the current time.

5 Related Work

One of the most related works on the spatio-
temporal logic is STL[7], that is going to be discussed.
STL is based on Temporal Logic and Symbolic Projec-
tion. The logic is used to describe contents of image
sequences using Symbolic Projection. Symbolic Pro-
jection is a tool for encoding the locations of the ob-
jects in a scene in , for example, 2D-strings such as (3,
j) where (i, j) indicates the location of the rectangles
partitioning the image. Using this expression, spatio-
temporal objects at time instance t 1s expressed as a
set of the indicaters such as (i, j). Using the indicators,
the objects are expressed as a set of rectangles whose
edges are parallel to one of the axis. This description
reduces spatial logic into the interval one. However,
our expression is based on simplicial complexes and
the logic is not a combination of the interval logic.
This differentiate our expression from the ones in STL.

In addition, spatial relationship of the two objects
in a scene are described in the form of assertions be-
forehands. Consequently, spatial reasoning about the
scene is limited to what is described by a set of as-
sertion. On the other hand, our method stores every
objects as a four dimensional figures in a database
without giving a limited set of assertions and spa-
tial reasoning and retrieval of the spatial objects in
a scene is possible. This also differentiate ours from
STL. And spatial relationships are limited to topolog-
ical ones such as overlaps and adjacent. As a result,
metric queries such as nearest neighbour query cannot
be answered in STL. ’

6 Conclusion

In this paper, we have addressed the spatio-
temporal OQL and its translator into the Universe
data representation which we are going to develop for
our spatio-temporal database system Hawks. We are
going to make the expressions in the spatio-temporal
OQL common and familiar to the users so that users
can write their queries. In addition, we are going
to make the expressions in Universe universal to de-
fine spatio-temporal objects and queries. The expres-
sions in Universe is based on the mathematical concept
of simplicial complexes, which is an effective tool for
modeling the figures in the four dimensional topolog-
ical space.

Transforming the spatial, temporal, and spatio-
temporal conditions into figures in the topological
four dimensional space is the heart of the idea and
we are now designing it eagerly. The transformation
can make complicated spatio-temporal queries such
as nested spatial and temporal querles into simpler
spatio-temporal ones. This is one of the features of
our approach.

Acknowledgments

This research was supported in part by The Min-
istry of Education, Science, Sports and Culture, Japan
under Grant-in-Aid for Scientific Research on Priority
Areas(Grant No. 08244105).

146

References
[1] H. Samet. Spatial Data Models and Query Pro-
cessing. Modern Database Systemns(W. Kim ed.).
Addison-Wesley Publishing Co., 1995.

[2] M. Aritsugi, and A. Makinouchi.- Design and
Implementation of Multiple Type Objects in a
Persistent Programming Language. Proc. IEEE
19th Int. Computer Software and Application
Conf.(COMPSAC’95). pp.70-76, 1995.

M.J. Egenhofer, A.U. Frank, and J.P. Jackson.
A Topological Data Model for Spatial Databases.
Proc. 1st Symp. SSD’89. pp.271-286. 1989.

R.G.G. Cattell (ed.). The Object Database Stan-
dard: ODMG-93 Release 1.2. Morgan Kaufmann,
1996.

S. Kuroki and A. Makinouchi. Design of the
Spatio-Temporal Data Model Universe using Sim-
plicial Complexes. IPSJ SIG Notes 109-37.
1996(in Japanese).

3]

[4]

[6] H. Horinokuchi, S. Kuroki, and A. Makinouchi.
Design and Implementation of R*-tree for Spa-
tiotemporal Index. Proc. IPSJ Int. Symp. Next-
Generation Information Systems and Technolo-

gies. 1997(to appear).

A. Del Bimbo, E. Vicario, and D. Zingoni. Sym-
bolic Description and Visual Querying of Image
Sequences Using Spatio-Temporal Logic. IEEE
Trans. Knowledge and Data Eng., 7(4). pp.609-
622. 1995.

A Classes in Universe

The structure of the classes in Universe are given
below.

class Point: public Persist_Object{
public:

//Attribute

int id_number;

double x[4];

//Relationship

d_Rel_List<Simplex, _has_point>
is_a_point_of;

3

class Simplex: public d_Object{
public:
//Attribute
int id_number;
int dimension;
//Relationships
d_Rel_List<Point,
has_point;
d_Rel_Ref<Complex,
belongs_to;
//Operation
Simplex& operator+
=(const d_Ref<Point>

_is_a_point_of>

_contains>

P);

Simplex& operator-

=(const d_Ref<Point> p);

Point* coordinate();

//Spatial Set Operation

Complex& Intersection(const Simplex s);
Complex& Difference(const Simplex s);
Complex& Union(const Simplex s);
//Spatial Relational Operation

int intersect(const Simplex s);

int disjoint(const Simplex s);

int contain(const Point p);

//Spatial Aggregate Predicate

double Volume();

}

class Complex: public d_Object {
public:

//Attribute

int id_number;

//Relationship

d_Rel_List<Simplex, _belongs_to> contains;

//Operation
Complex& operator+

=(const d_Ref<Simplex> s);
Complex& operator-

=(const d_Ref<Simplex> s);
//Spatial Set Operation
//(1)The case of having no common

part between Complex and Complex ¢
Complex& plus(const Complex c);
Complex& minus(const Complex c¢);
//(2)The case of having common
parts between Complex and Complex ¢

Complex& Intersection(const Complex c);
Complex& Difference(const Complex ¢);
Complex& Union(const Complex ¢);
//4D Geometric Operation
Complex& Cross_section(const Simplex s);
Complex& Projection(const Simplex s);
//Spatial Relational Predicate
int intersect(const Complex c);
int contain(const Complex ¢);
int disjoint(const Complex c);
//Spatial Aggregate Predicate
double Distance(const Complex c);
double Volume();
}

147

