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Abstract

Temporal reasoning and temporal query languages
present di�cult research problems of theoretical inter-
est and practical importance. One problem is the chasm
between point-based temporal reasoning and interval-
based reasoning. Another problem is the lack of ro-
bustness and universality in many proposed solutions,
whereby temporal extensions designed for one language
cannot be easily applied to other query languages|
e.g., extensions proposed for SQL cannot be applied to
QBE or Datalog. In this paper, we provide a simple
solution to both problems by observing that all query
languages support (i) single-value based reasoning and
(ii) aggregate-based reasoning, and then showing that
these two modalities can be naturally extended to sup-
port, respectively, point-based and interval-based tem-
poral queries. We follow TSQL2 insofar as practical
requirements are concerned, and show that its func-
tionality can be captured by simpler constructs which
can be applied uniformly to Datalog, QBE and SQL.
Then, we show that an e�cient implementation can be
achieved by mapping into a di�erent storage represen-
tation, and discuss a prototype built along these lines
using the LDL++ system with extended aggregates.

1. Introduction

With many applications requiring support for tem-
poral databases, extensive research has focused on tem-
poral queries and reasoning [12]. A critical issue in all
these approaches is the choice of model used to rep-
resent valid time: for instance, many approaches rep-
resent valid time states by temporal intervals, while
point-based models view the database as a sequence of
snapshots [3, 13]. The major drawback of the interval-
based data model is the need for coalescing time inter-
vals when a projection is taken, whereas point-based

data models are free from this problem. On the other
hand, many temporal queries can be expressed natu-
rally using intervals, e.g., using Allen's interval oper-
ators. Furthermore, intervals provide an e�cient rep-
resentation for the physical storage of the data, while
point-based conceptual models must be mapped into
di�erent representations for storage e�ciency.

The language TSQL2 [11] introduced a consensus
extension to SQL-92 that supports a Bi-temporal Con-
ceptual Data Model [6], which handles both valid time
and transaction time. In TSQL2, there is no explicit
time column in the relations, and valid time cannot be
referred in the query as a tuple attribute; therefore,
we say that TSQL2 has an implicit-time data model.
By keeping time implicit, TSQL2 eliminates the need
for a user to specify the coalescing of time periods [2].
However, implicit time makes the semantics of TSQL2
more obscure and di�cult to formalize. Furthermore,
the fact that one cannot work directly with time makes
certain queries hard to express and requires the intro-
duction of special temporal constructs to achieve the
same goal indirectly. This bring us to the second prob-
lem, i.e., said special TSQL2 constructs are designed
for SQL only, and do not generalize into a universal
temporal data model and query language that can be
used for, say, QBE and Datalog. We refer to this prob-
lem as the lack of universality of TSQL2.

In this paper, we �rst propose an approach based
on a point-based explicit-time model and on tem-
poral aggregates to support interval-based reasoning.
We demonstrate the universality of this approach, by
proposing parallel designs for SQL, QBE, and Datalog.
Then, we tackle the problem of e�cient implementa-
tion for these languages, by proposing two storage rep-
resentations, one based on intervals, and the other on
events, which avoid the space ine�ciency problem of
point-based representations. Queries on point-based
representations at the conceptual level can be eas-
ily mapped into equivalent queries on interval-based



or event-based representations at the implementation
level. Because of space limitations, we only discuss
valid time in this paper, although our approach can be
extended to handle transaction time.

2. TSQL2

To illustrate some of the issues with TSQL2, con-
sider a patient database with the history of prescrip-
tions given to patients as in [17]. The schema and
sample TSQL2 queries are as follows:

1. Schema de�nition

Example 1 De�ne the Prescript relation

CREATE TABLE Prescript (Name CHAR(30),

Physician CHAR(30), Drug CHAR(30),

Dosage CHAR(30),

Frequency INTERVAL MINUTE)

AS VALID STATE DAY

The Prescript relation is a valid time relation. The
valid time has a granularity of one day. The im-
portant observation to be made here is that valid
time must be quali�ed via annotations, since it is
not a column of the relation.

2. Temporal selection and join

Example 2 What drugs have been prescribed with
Proventil?

SELECT P1.Name, P2.Drug

FROM Prescript AS P1 P2

WHERE P1.Drug = `Proventil`

AND P2.Drug <> `Proventil`

AND P1.Name = P2.Name

The query returns the patient's name, the drug
and the maximal periods during which both that
drug and Proventil were prescribed to the patient.

Undoubtedly, queries involving only selections,
projections, and joins represent the best feature
of TSQL2, insofar as these queries are the same
as in standard SQL-92. This is accomplished by
keeping the time dimension implicit, as illustrated
by the fact that the valid-time column is not even
mentioned in the previous query. Therefore, by de-
fault, a TSQL2 query on a valid-time relation re-
turns a valid-time relation. Additional constructs
must then be used to deviate from this behav-
ior. For instance, the keyword snapshot must be

added to produce a normal relation instead of a
valid-time one. While using the keyword snapshot
adds little complexity to a query, other constructs
needed to override TSQL2's defaults are neither
simple nor user-friendly. The VALID clause dis-
cussed next is an example.

3. VALID clause

The VALID clause is used to override the default
timestamp of the resulting tuple of a query.

Example 3 What drugs were Melanie prescribed
during 1996?

SELECT Drug

VALID INTERSECT(VALID(Prescript),

PERIOD `[1996]` DAY)

FROM Prescript

WHERE Name = `Melanie`

The query returns drugs, if any, prescribed to
Melanie in 1996 and the maximal periods during
which Melanie took the drugs. There will be tuples
returned if some drugs were prescribed to Melanie
in 1996; but, due to the VALID annotation added
to the SELECT clause, only the drug history for
1996 is shown, rather than the complete history.
The need for this special construct valid is created
by the fact that time in TSQL2 is kept implicit.

3. Explicit Time Queries

The basic approach we propose here is based on
a point-based temporal data model and on explicit-
time queries. Our point-based temporal data model
assumes:

� the use of some granularity for representing valid
time|for instance we will uses days in our exam-
ples,

� every temporal relation contains an additional col-
umn, say the last column, called VTime, storing
single time-granules, and

� the relation contains one row for each (time) point
at which the database fact is valid.

For instance, a temporal (virtual) relation that is
supported by the system, the calendar relation, is as
follows:

Calendar Year Month Day VTime

: : : : : : : : : : : :

1996 September 24 24/09/1996
: : : : : : : : : : : :



Here, we display only one tuple as a sample of our
calendar relation. Also observe that we represent valid-
time dates using the day/month/year notation.

This calendar relation is not a stored object, it is
a virtual view that provides a user-friendly QBE in-
terface to calendar queries, such as the following that
returns all days in September 1996:

Calendar Year Month Day VTime

P.1996 P.September P.

In as much as this calendar query is implemented by
an internal calendar function, it exempli�es the main
idea of our approach: select a data model that sim-
pli�es the expression of complex temporal queries, and
rely on mapping to e�cient internal representations for
implementation. The idea of di�erent representations
at di�erent levels has been long popularized by the
ANSI/X3/SPARC architecture for DBMS [4]. E�ec-
tive representations at the storage level are discussed in
Section 7. Also at the end-user level, simple solutions
exist to avoid the redundant printouts generated by
point-based representations. For instance, rather than
having the previous query generate 30 tuples, identi-
cal in the year and month columns, we can use the
following display to present the results:

Result Year Month VTime

1996 September 01/09/1996
: : : : : : : : :

1996 September 30/09/1996

Since people are quite adept at �lling-in the dots,
this is a concise and unambiguous representation for
much larger sets. The same sets could also be repre-
sented by a single tuple as follows:

(1996, September, 01/09/1996 : : : 30/09/1996)

This can either be viewed as an unnormalized tuple,
where September 1996 is associated with the set of days
01/09/1996 : : : 30/09/1996, or as an interval-based rep-
resentation of the same information. An interval-based
representation is acceptable at the user level, and has
some properties that make it an interesting (although
perhaps not the best) candidate at the storage level, as
it will be discussed later.

3.1. Schema definition in SQLT

We now describe SQLT , our valid-time extension of
SQL-92, where explicit time is used in schema declara-
tions and queries.

Example 4 De�ne the Prescript relation

CREATE TABLE Prescript (Name CHAR(30),

Physician CHAR(30), Drug CHAR(30),

Dosage CHAR(30),

Frequency INTERVAL MINUTE, VTime DAY)

Thus, the valid time has become the last column
in our relation. The reserved keyword VTime must be
used to denote the name of the valid-time column|a
relation can have at most one of these columns. Similar
conventions apply to the schemas de�ned in QBE, or
to Datalog languages, such as LDL++ [16, 18]. The
expressions of temporal selection and join queries in
SQLT , QBET and DatalogT are straightforward and
are shown next.

3.2. Temporal Selection and Join

Example 5 What drugs have been prescribed with
Proventil?

SELECT P2.Name, P2.Drug, P2.VTime

FROM Prescript AS P1 P2

WHERE P1.Drug = `Proventil`

AND P2.Drug <> `Proventil`

AND P2.Name = P1.Name

AND P2.VTime = P1.VTime

Prescript Name � � � Drug � � � VTime

name Proventil vtime
P. name P. drug P. vtime

Conditions

drug := Proventil

query1(Name; Drug; VTime) 
prescript(Name; ; `Proventil`; ; ; VTime);
prescript(Name; ; Drug; ; ; VTime);
Drug �= `Proventil`:

3.3. TheVALID Clause

TSQL2's VALID clause is no longer needed since, in
SQLT , the target time span can be explicitly controlled
by conditions in the WHERE clause.

Example 6 What drugs was Melanie prescribed dur-
ing 1996?

SELECT P.Drug, P.VTime

FROM Prescript AS P, Calendar AS C

WHERE P.Name = `Melanie` AND C.Year = 1996

AND P.VTime = C.VTime



The same query can be expressed as follows in QBET

and DatalogT :

Calendar Year Month Day VTime

1996 vtime

Prescript Name � � � Drug � � � VTime

Melanie P. drug P. vtime

query2(Drug; VTime) 
calendar(1996; ; ; VTime);
prescript(`Melanie`; ; Drug; ; ; VTime):

4. Interval-Oriented Reasoning

An important requirement of all temporal languages
is to support Allen's interval operators such as overlaps,
precedes, contains, equals, meets, and intersects [1].

Temporal languages that are based on temporal in-
tervals [7] rely on these operators to express temporal
joins. In this kind of languages, the query of Example
2 would be expressed by the condition 'P1 overlaps P2'.
No explicit use of overlaps is needed in point-based se-
mantics, since two intervals overlap if and only if they
share some common points [3, 13]. This conclusion also
holds for TSQL2, where equality between time points
is assumed as default condition when no other tempo-
ral condition is given. In TSQL2, however, the user
must use explicit constructs to specify the remaining
Allen's operators. For instance, consider the following
query:

Example 7 TSQL2 Query: �nd the patients who have
been prescribed Proventil, throughout 1996.

SELECT SNAPSHOT Name

FROM Prescript(Name, Drug) AS P

WHERE P.Drug = `Proventil`

AND CONTAINS(VALID(P),

PERIOD `[1996]` DAY)

This query returns the patient's name if the patient
took Proventil for the whole period of 1996. Thus
VALID(P) denotes the valid time of tuples in P repre-
sented as one or more intervals (i.e., periods in TSQL2
terminology), and PERIOD `[1996]` DAY is simply a
constructor of a time period starting January 1, 1996,
and ending December 31, 1996.

If a patient took Proventil during several non-
contiguous time periods, then, at least one of these
intervals must contain the \Year 1996" time period.
This brings out the important point that TSQL2 is re-
ally dealing with sets of intervals (a time element in

TSQL2's terminology), rather than a single interval.
For now, let us ignore this point (discussed in great
length in Section 6) as if every drug were only pre-
scribed during one interval. Then, consider

FROM Prescript(Name, Drug) AS P

The attribute-list (Name, Drug) is an instance of
TSQL2's \special" extension of SQL-92 called restruc-
turing. The purpose of this construct is to de�ne the at-
tributes on which the tuples must be coalesced. Indeed
Proventil might have been prescribed to the same pa-
tient by di�erent physicians, and with di�erent dosage
and frequency. If we remove the attributes (Name,
Drug) from the FROM clause of the previous query, the
meaning of the query is changed into: �nd the patients
who have been prescribed Proventil, by the same physi-
cian, with the same dosage and frequency, throughout
1996; this is a much stricter condition than the orig-
inal one. Therefore, to support this query, we need
to project out the physician, dosage, and frequency
columns, and coalesce the time intervals into maximal
intervals of time during which the values of attributes
(Name, Drug) remain unchanged.

Many queries that arise in the context of interval-
oriented reasoning involve duration. For instance, we
might want to �nd the names of the patients who have
been prescribed some drugs for a total of more than
240 days. Again, we have to use restructuring to en-
sure that we accumulate the length of a prescription in-
dependent of physician, dosage and frequency (e.g., to
ensure that patients do not circumvent the maximum
prescription period limitations by changing physician).

Example 8 TSQL2 Query: �nd the patients who have
been prescribed some drug for more than 240 days.

SELECT SNAPSHOT Name

FROM Prescript(Name, Drug) AS P

WHERE CAST(VALID(P) AS INTERVAL DAY)

> INTERVAL `240` DAY

Again, VALID(P) de�nes one or more periods. In
TSQL2, the terms period and interval denote, respec-
tively, anchored and unanchored spans of time. Thus,
in TSQL2, casting is needed to convert a set of (one or
more) periods to an interval by adding up the length
of each period. Therefore, the query in Example 8
adds up the lengths in days of all periods during which
a patient took the same drug, and checks whether the
accumulated length exceeds 240 days. A more complex
TSQL2 query is needed to �nd patients who took the
same drug for more than 240 consecutive days|i.e., a
continuous prescription of the same drug for more than
240 days; this is discussed in Section 6.



5. Temporal Aggregates

In a point-based temporal model, intervals are sets
of contiguous points; thus set aggregates should be used
to support interval-oriented reasoning. For instance,
the last query can be formulated and expressed in SQL-
92 as follows:

Example 9 SQL-92 Query for Example 8

SELECT Name

FROM Prescript

GROUP BY NAME, DRUG

HAVING COUNT(VTime) > 240

Observe that, unlike TSQL2 which had to introduce
restructuring, no new construct is needed here. The set
of attributes each period is associated with is speci�ed
explicitly and unequivocally by the group-by attributes
NAME, DRUG.

While the semantics of the count aggregate faithfully
expresses the concept of duration, we will introduce in
SQLT a special temporal aggregate length to optimize:

� users' convenience of having mnemonic constructs
to express the intuitive meaning of the intended
operation (also we include versions that convert to
di�erent granularities, e.g., length month to con-
vert to numbers of months), and

� e�ciency of execution since the implementation
can be optimized directly from the storage rep-
resentation used for valid time (e.g., an interval-
based representation).

Therefore, in our SQLT language, the previous
query will be expressed as follows:

Example 10 SQLT Query for Example 8

SELECT Name

FROM Prescript

GROUP BY NAME, DRUG

HAVING LENGTH(VTime) > 240

Di�erent styles of aggregate queries are possible for
SQLT . For instance, we can express the query in Ex-
ample 10 using nested sub-queries, as follows:

Example 11 Temporal Aggregates in SQL-92 using
Nested Sub-queries (same as Example 10)

SELECT P.Name

FROM Prescript AS P

WHERE LENGTH (

SELECT P1.VTime

FROM Prescript AS P1

WHERE P1.NAME = P.NAME

AND P1.DRUG = P.DRUG) > 240

This second form is in fact preferable, since it is more
general and accommodates any number of group-by
combinations|unlike the explicit group-by form used
in Example 10.

Since all query languages support aggregates, our
new temporal aggregates can be added on without per-
turbing the syntactic and semantic structure of the
original languages. Thus, in QBET , our query can be
expressed as follows:

Example 12 QBET Query for Example 8

Prescript Name � � � Drug � � � VTime

P.G. name G. drug vtime

Conditions

LENGTH. vtime > 240

Of particular interest, is the \G" appearing in the
�rst and third columns of the �rst table; this denotes
that name and drug serve as group-by columns for
other variables, such as vtime, that appear in the same
row without \G" [9].

For DatalogT languages, we will use the head-
aggregation syntax of LDL++ [19]. Then, our pre-
vious query can be expressed as follows:

Example 13 DatalogT Query for Example 8

groupdays(Name; Drug; lengthhVTimei) 
prescript(Name; ; Drug; ; ; VTime):

query3(Name) groupdays(Name; ; TotalDays);
TotalDays> 240:

Here an attribute name followed by the pointed
brackets denotes an aggregate column. Every aggregate
column is implicitly grouped by all the non-aggregate
columns in the head of the rule. Thus, in our example,
we compute the aggregate length of VTime with respect
to the two other columns Name and Drug.

In general, the limitations caused by implicit group-
by attributes are easily overcome given the great ex-
ibility of user-de�ned aggregates in LDL++, Version
5 [16, 18]. In particular, we have de�ned a binary ag-
gregate called contains which is true when one set of
time points contains all the time points in the other
set. Thus our query of Example 7 can be formulated
as follows:

Example 14 DatalogT Query for Example 7: �nd the
patients who have been prescribed Proventil, throughout
1996.



query4(Name; containsh(VTime1; VTime2)i) 
prescript(Name; ; `Proventil`; ; ; VTime1);
calendar(1996; ; ; VTime2):

In an interval-based representation, VTime1 and
VTime2 are implemented as two sets of intervals. Then,
containsh(VTime1, VTime2)i is implemented by check-
ing that, for each interval I2 in VTime2, there is an
interval I1 in VTime1, such that I1 contains I2.

The binary aggregate contains can also be used in
QBET quite naturally:

Example 15 QBET Query for Example 7

Prescript Name � � � Drug � � � VTime

P.G. name Proventil vtime1

Calendar Year Month Day VTime

1996 vtime2

conditions

CONTAINS.( vtime1, vtime2)

In SQLT , the same query is expressed most natu-
rally using the nested sub-query technique discussed
previously:

Example 16 SQLT Query for Example 7

SELECT P.Name

FROM Prescript AS P

WHERE

((SELECT P1.VTime

FROM Prescript AS P1

WHERE P1.Name = P.Name

AND P1.Drug = P.Drug

AND P1.Drug = `Proventil`)

CONTAINS

(SELECT C.VTime

FROM Calendar AS C

WHERE C.Year = 1996))

GROUP BY P.Name

The semantics of our new temporal aggregates can
be de�ned from existing SQL-92 aggregates in a very
natural fashion. For instance, CONTAINS(S1, S2) can
be de�ned as a shorthand of

COUNT(S1) = COUNT(S1 \ S2)

where the set intersection can be expressed using joins.
Likewise, PRECEDES(S1, S2) and MEETS(S1, S2) can
be respectively de�ned as MAX(S1) < MIN(S2) and
MAX(S1) = MIN(S2).

6. Dealing with Periods

TSQL2's basic time element consists of a set of pe-
riods. For a drug, therefore, the duration of each
prescription period is added up when computing the
length of a prescription. To deal with individual pre-
scription periods, TSQL2 introduces the special key-
word PERIOD. Thus, to �nd drugs prescribed for more
than 240 consecutive days, we have the following query:

Example 17 TSQL2 Query: �nd the patients who
have been prescribed some drugs for more than 240 con-
secutive days.

SELECT SNAPSHOT Name

FROM Prescript(Name, Drug) (PERIOD) AS P

WHERE CAST(VALID(P) AS INTERVAL DAY)

> INTERVAL `240` DAY

This solution su�ers from several problems including
the fact that (i) partitioning violates the TSQL2's data
model [11] and (ii) we do not know how to extend this
construct to query languages where there is no FROM
clause.

Again, TSQL2's problem can be solved using a new
aggregate called period which basically enumerates the
periods in ascending temporal order. Time-points that
fall within the same consecutive period of time are given
the same period number (PerNo), and a di�erent num-
ber is used for each period.

We can now de�ne the following view:

Example 18 A View Enumerating Periods

CREATE VIEW PartitionedP(Name, Drug,

PerNo, VTime)

AS SELECT P1.Name, P1.Drug,

PERIOD(P2.VTime), P1.VTime

FROM Prescript AS P1 P2

WHERE P1.Name = P2.Name

AND P1.Drug = P2.Drug

GROUP BY P1.Name, P1.Drug, P1.VTime

Now, PerNo can be used as one of the group-by at-
tributes:

Example 19 SQLT Query for Example 17

SELECT Name

FROM PartitionedP

GROUP BY Name, Drug, PerNo

HAVING LENGTH(VTime) > 240



An important advantage of this approach is that
SQLT can be de�ned completely using SQL-92. To
compute PerNo for any time-point in an interval we
must count the number of start-points of periods be-
fore it. Thus, the view PartitionedP could also have
been de�ned as follows:

Example 20 The meaning of PERIOD in SQL-92

CREATE VIEW PartitionedP(Name, Drug,

PerNo, VTime)

AS SELECT P1.Name, P1.Drug,

COUNT(P2.VTime), P1.VTime

FROM Prescript AS P1 P2

WHERE P1.Name = P2.Name

AND P1.Drug = P2.Drug

AND P1.VTime > = P2.VTime

AND NOT EXIST

(SELECT P3.*

FROM Prescript AS P3

WHERE P3.VTime = P2.VTime � 1

AND P3.Name = P2.Name

AND P3.Drug = P2.Drug)

GROUP BY P1.Name, P1.Drug, P1.VTime

This de�nition is primarily of theoretical interest.
The direct implementation of this aggregate is much
more e�cient|actually very e�cient as we assume
that the intervals are stored in ascending temporal or-
der.

The previously created view can be useful for other
queries as well. For instance, a query to �nd drugs
whose �rst period of prescription to a patient was to-
tally contained in 1996, is simply expressed as follows:

Example 21 SQLT Query: �nd drugs whose �rst pre-
scription period is contained in 1996

SELECT P.Drug

FROM PartitionedP AS P

WHERE P.PerNo = 1 AND

((SELECT C.VTime

FROM Calendar AS C

WHERE C.Year = 1996)

CONTAINS

(SELECT P1.VTime

FROM Prescript AS P1

WHERE P1.Name = P.Name

AND P1.Drug = P.Drug))

GROUP BY P.Drug

This query is hard to express in TSQL2 but it is
easy to be expressed in QBET and DatalogT extended
with a period aggregate and a length aggregate.

Example 22 QBET Query for Example 21

Prescript Name ... Drug ... VTime

G. name G. drug PERIOD.( vtime)

PartitionedP Name Drug PerNo VTime

name drug perno vtime

PartitionedP Name Drug PerNo VTime

P.G. drug1 perno1 vtime1

Calendar Year Month Day VTime

1996 vtime2

Conditions

perno1 = 1 AND CONTAINS( vtime2, vtime1)

Example 23 DatalogT Query for Example 21

partitionedP(Name; Drug;periodhVTimei) 
prescript(Name; ; Drug; ; ; VTime);

query5(Drug; containsh(VTime2; VTime1)i) 
partitionedP( ; Drug; 1; VTime1);
calendar(1996; ; ; VTime2):

In DatalogT , periodhVTimei must return the orig-
inal argument VTime along with its period number
PerNo. On the other hand, contains evaluates to ei-
ther true or false and returns zero arguments. There-
fore, only the Name, Drug values for which the aggregate
containsh(VTime2, VTime1)i evaluates to true are pro-
duced in the head of the rule. The exibility of having
zero, one, or several values returned is supported in
Version 5.1 of LDL++ [16, 18].

7. Implementation

In this section, we discuss two alternative implemen-
tations of our universal temporal languages. One im-
plementation is based on storing temporal intervals,
and the other on storing events. Therefore, queries
expressed against the point-based conceptual model
must be translated into equivalent queries against an
interval-based representation or an event-based repre-
sentation. We will base our description on an imple-
mentation built at UCLA, where DatalogT is supported
on top of the LDL++ system using extended aggre-
gates [18, 19].



7.1. Interval-based implementation

Mapping to an interval-based relation at the inter-
nal level solves the space e�ciency problem associated
with the point-based data model used at the concep-
tual level. Then, tuples in our internal relations are
timestamped with two time instants: one indicates the
start-point and the other the end-point of the interval.

In the interval-based implementation, the database
schema of Example 1 is translated into the following
LDL++ schema:

database(fprescript(Name : string;
Physician : string; Drug : string;
Dosage mg : integer;
Frequency Minute : integer;
Interval : (VTime; VTime))g):

We will now describe the mapping of queries on a
point-based view to their interval-based equivalent us-
ing the syntactic framework of Datalog.

7.1.1. Selections, Projections and Joins

Take our query from Example 2 \What drugs have
been prescribed with Proventil":

query6(Name; Drug; VTime1) 
prescript(Name; ; `Proventil`; ; ; VTime1);
prescript(Name; ; Drug; ; ; VTime2);
VTime1 = VTime2;

Drug �= `Proventil`:

The equality VTime1 = VTime2 on the point-based
model can be translated into an explicit condition in-
tersect(Int1, Int2, Int); in the interval-based representa-
tion this predicate returns every non-null intersection
of Int1 and Int2 as Int. Since some columns of the origi-
nal relation were dropped, an interval coalescing step is
then performed using the aggregate coales. Therefore,
we obtain the following equivalent rule:

query7(Name; Drug; coaleshInti) 
prescript(Name; ; `Proventil`; ; ; Int1);
prescript(Name; ; Drug; ; ; Int2);
intersect(Int1; Int2; Int):
Drug �= `Proventil`:

Once the intervals in prescript are arranged in ascend-
ing temporal order, the resulting values of Int can also
be generated in that order; then, the computation of
the coalescing aggregate coales can be performed quite
e�ciently.

In summary, a new intersect predicate is required for
each temporal join speci�ed by the original rule. More-
over, coales aggregation is required on the temporal ar-
gument when various columns have been projected out
from goals in the body of the rule. A simple analysis
shows coalescing is not needed for those rules where
(i) there is no temporal argument in the head of the
rule, or (ii) all variables appearing in the body of the
rule also appear in its head. (These represent su�cient
conditions, and more general syntactic conditions can
be derived.) For instance, the rule

q(X; Y; VTime) p1(X; 5; VTime); p2(X; Y; VTime)

Will be rewritten using an intersect predicate but no
coales aggregate. Consider now the following two rules:

q1(Y; VTime) p1(X; Y; VTime); X> 75:

q2(Y; VTime) p1(75; Y; VTime):

The �rst rule requires coalescing (i.e., it will be trans-
formed by adding the aggregate coales in the head),
while the second does not (and will be left unchanged).

7.1.2. Temporal Aggregates and Allen’s Operators

An interesting aspect of our approach is that no rule
or query transformation is needed for temporal aggre-
gates. Instead, it is su�cient to provide a direct im-
plementation of these aggregates on the interval repre-
sentation. For instance, the �rst rule in Example 13 is
kept without any change as:

groupdays(Name; Drug; lengthhVTimei) 
prescript(Name; ; Drug; ; ; VTime):

The implementation of length just requires an ad-
ditional step after coales: once a maximal interval is
constructed, its length is added to the running sum.
In a similar fashion, we can implement the period ag-
gregate assuming that the intervals are sorted in as-
cending start-time order: once a maximal interval is
determined, the running count (rather than sum) is
incremented. Also, the contains operator can be imple-
mented in linear time once intervals are sorted [19].

7.2. Event-Based Implementation

In the event-based representation, we store changes
between states, rather than the intervals in which the
states hold. Thus, the following four entries,

prescript('Melaine', 'Dr. Frank', 'Proventil',

3mgs, 360, ins(21,11,1996)).



prescript('Melaine', 'Dr. Frank', 'Proventil',

3mgs, 360, del(28,11,1996)).

prescript('Melaine', 'Dr. Frank', 'Proventil',

6mgs, 360, ins(28,11,1996)).

prescript('Melaine', 'Dr. Frank', 'Proventil',

6mgs, 360, del(31,12,1996)).

describe the fact that initially Melaine was taking, un-
der Dr. Frank's prescription, Proventil with dosage
3mgs, and frequency 360 minutes, from November 21st,
1996 till November 27th; then, the dosage was in-
creased to 6mgs on November 28th, and the situation
continued with no further change till December, 30,
1996. Therefore, ins represents inserts and del repre-
sent deletes; for simplicity, updates (e.g., increase in
dosage to 6mgs) are hereby represented by a pair of
delete/insert sharing the same time.

7.2.1. Selection, Projection and Join

The query in Example 2 \What drugs have been
prescribed with Proventil" can now be implemented as
follows:

query8(Name; Drug; coaleshEi) 
prescript(Name; ; `Proventil`; ; ; E1);
prescript(Name; ; Drug; ; ; E2);
newevent(E1; E2; E);
Drug �= `Proventil`:

The predicate newevent(E1, E2, E) is true if the last
E1 event before E2 is an insertion, and, in this case,
E = E2 (i.e., a joined event E is generated with the
same type and timestamp as E2). Symmetrically, new-
event(E2, E1, E) is true if the last E2 event preceding
E1 is an insertion; then, E = E1. These operations can
be performed e�ciently once the events are stored in
temporal order.

The conditions under which the aggregate coales
must be included in the head of the rule are the same
as for the interval-based implementation. The imple-
mentation of coales is also similar to that in interval-
based implementation: a pass is made through the tu-
ples sorted in ascending temporal order, and a running
count is computed on the insert and delete events ap-
plied to the tuples till the current time (the number of
ins must always be � to that of del). Then, we only
keep ins when the running count changes from zero to
one, and we only keep del when the count changes from
one to zero; all the other events are eliminated.

7.2.2. Temporal Aggregates and Allen’s Operators

Again, no rewriting of the original rules for aggre-
gates is needed as we move from a point-based repre-
sentation to an event-based one. Here too, if we assume

that events are stored by ascending temporal order, the
implementation of period and length can be piggyback
on that of coales. For period, we only need to keep a
running count of all inserts generate by coales and both
the insert and delete events are marked with a period
number (PerNo). For length, when coales generates a
new delete, the duration of time between the last insert
and this delete must be added to the sum of intervals
detected so far.

The implementation of all Allen's interval operators
is straightforward, except for the contains operator.
The comparison of two given intervals, each denoted
by their insert event and delete event, is simple; the
problem is that we are dealing with set of intervals,
and we must pair-up the insert event with the delete
event to ensure that they are from the same interval
rather than from two di�erent ones. Thus we must use
pairs of events that have the same period number.

In a nutshell, the mapping of queries on the point-
based representation to the event-based representation
is simply accomplished by using few and well-behaved
operators [5]. Similar considerations hold for interval-
based representations.

8. Conclusion

Space limitations prevent us from discussing the
large body of interesting research work previously pub-
lished on temporal databases|see [8] and [10] for sur-
veys of the topic.

Whereas query languages proposed in the past rely
on the introduction of new temporal constructs, we
have taken a minimalist's approach, and showed that
current query languages provide all the syntactic con-
structs and semantic notions needed to express tempo-
ral queries as powerful as those expressible in TSQL2.
While the standard SQL aggregates, such as sum,
count, min and max, would su�ce in terms of ex-
pressive power, we have added temporal aggregates to
boost users' convenience and implementation e�ciency.

In this paper, we proved the power and generality of
this approach by showing that it can express all valid-
time TSQL2 queries, and it can be extended uniformly
to SQL, QBE, and Datalog. As a �rst step toward
e�cient implementation, we have also provided sim-
ple compilation strategies to translate these queries to
equivalent ones executing on either an interval-based
representation or an event-based one.

A cornerstone to the simplicity and generality of this
approach, is the use of a point-based representation,
whose bene�ts were �rst explored by Toman [14, 15].
Here, we have improved on that work by introduc-
ing temporal aggregates that model Allen's temporal



operators and TSQL2's partitioning by user-friendly
constructs amenable to e�cient implementation [19].
We have also shown the universality of the approach
(i.e., its validity with di�erent query languages) and
suggested that implementations based on stored events
might be preferable to those using intervals.
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