Constructing XML-speaking Wrappers for WEB Applications:
Towards an Interoperating WEB

Eleni Stroulia, Judi Thomson, Gina Situ
Computing Science Department
University of Alberta
Edmonton, AB T6G 2H1, Canada
{stroulia,thomson,qihua} @cs.ualberta.ca

Abstract

In this paper, we discuss an architecture for integrating
WWW applications that offer information and services in
the same domain. At the center of this architecture ex-
ists a mediator, whose responsibilities are to interact with
the user and to effectively exchange information with the
underlying applications in order to accomplish the user’s
task. The integration and interoperation of the existing ap-
plications are based on the availability of a common do-
main model, explicitly represented in XML. More specifi-
cally, we have developed a general method for construct-
ing wrappers for web-based applications, so that they ex-
change data with shared semantics such as defined in the
XML domain model. At run-time, the user’s requests result
in the mediator’s XML queries to the applications wrap-
pers, which, in turn, invoke appropriate methods on the
wrapped applications and extract XML data from their re-
sponses to these queries.

1 Introduction

Today’s plethora of applications available on the World
Wide Web presents a great opportunity to consumers who
can access, compare and combine a variety information
and services using their browsers. This availability also
presents a great challenge: different applications, even
if they offer related information and services, use dif-
ferent technologies for presenting and receiving informa-
tion from their client-side interfaces (ASP, java, javascript,
perl etc.), different models for the system-user interaction
(menu-driven, form fili-in, or command-driven) and differ-
ent models for their application domains. Fueled by ever-
increasing e-commerce needs, existing web-based appli-
cations are continuously being reengineered to offer more
serVicgs and towinteroperate with other applications in ag-
gregate sites (portals) offering complex services such as
comparative shopping and price negotiation for combined

1095-1350/00 $10.00 © 2000 IEEE

59

client orders.

The major impediment to such reengineering efforts
is the lack of any agreement regarding the structure and
the semantics of the information provided and required by
these WWW applications. The present language of the
WWW (HTML) only specifies how the material should ap-
pear to the user. Web-based applications expose HTML
forms to their users’ browsers, possibly enhanced with
client-side scripts in different languages. The user has to
appropriately interpret the semantics of the information re-
quired by the form and to fill it out correctly. Then, the
server application responds with another HTML document
containing information that the user can interpret as an an-
swer to his original request. It is up to the user, then, to
combine the information in the responses of multiple ap-
plications and, possibly, to use it to formulate new requests
to yet other applications.

Integration frameworks such as DCOM and CORBA,
provide a protocol for advertising, requesting and deliver-
ing services distributed within a network. These frame-
works propose to repackage portions of (or even whole)
existing applications as object libraries. The application
services are specified using the framework IDL (Inter-
face Definition Language) and then delivered to request-
ing clients by the framework ORB (Object Request Bro-
ker). The utility of these frameworks is limited because
the frameworks of different vendors do not easily integrate
with each other and, even more importantly, because they
offer no support for semantic interoperability. That is, for
every two applications that might interact, the internal pro-
cessing assumptions that they make about the information
they exchange must be checked for inconsistencies and any
necessary translation needs to be explicitly compiled in one
or both of the packages. ‘

An alternative approach to the integration problem is
the development of declarative, intermediate representa-
tions for domain-specific semantics. If each application
explicitly specifies the semantics of the information it re-

quires and provides, then any other application can check
this specification against its own input and output specifi-
cations. Thus, these semantically rich representations can
provide a “semantic glue” among interoperating WWW
applications. Existing applications that do not “speak”
these protocols can be “wrapped” with intelligent adapters
whose role will be to use the native interaction model of
the application to “call” the appropriate application meth-
ods, and to translate the results of these calls into messages
conforming to the communication protocol. In addition,
specific types of intelligent intermediary brokers can be
developed to understand and execute value-added services,
such as price negotiation or comparison shopping. The eX-
tensible Markup Language (XML) is an ideal candidate for
such a declarative representation, by providing for seman-
tic annotation of information, as well as providing for pre-
sentation information in the form of style sheets.

In this paper, we discuss an architecture for develop-
ing aggregate applications by combining existing WWW
applications and enabling them to interoperate through
declarative XML-based representations. In this architec-
ture, WWW applications in a specific domain are encapsu-
lated within wrappers that interact with a mediator that acts
as an intelligent, task-specific intermediary. The mediator
has a canonical model of the domain to interpret the infor-
mation provided and used by the integrated applications,
and a task model to coherently integrate its interactions
with the user and the underlying applications. In order for a
new application to be integrated, a set of rules must be for-
mulated, for how to reverse engineer structured instances
of particular domain-model entities from the application’s
response to a particular information request. This rule set
is then plugged in a generic wrapper component of the ar-
chitecture, creating a wrapper for the particular resource
application.

The remainder of this paper is organized as follows:
section 2 discusses the overall mediation architecture and
illustrates the processes of the mediator and the wrappers
using our travel-planning prototype as an example, section
3 discusses the general wrapper of the architecture, 4 dis-
cusses the specific wrapper construction problem on which
this work focuses and the process developed to address
it, section 5 discusses our evaluation of this process and
some limitations we discovered from our experiments with
it, section 6 puts this work in the context of other related
work, and finally section 7 outlines some early conclu-
sions that can be drawn from this work and outlines plans
for future work.

2 System Architecture and Process

To illustrate the integration approach proposed by this
work, let us discuss a particular instance of the WWW ap-

60

plication integration problem. Today there are a multitude
of WWW sites offering travel planning and reservation ser-
vices. Knowledgeable consumers, with specific constraints
and preferences, access several different sites to identify
available options. Then they have to compare the results
from these different sites prior to making a decision. We
have integrated services and information from four differ-
ent existing web servers to develop a travel-planning appli-
cation that enables travelers to collect and compare travel
plans from different sources.

The overall architecture of the resulting integrated ap-
plication, shown in Figure 1, consists of four conceptual
layers: the user interface layer, the mediator layer, the
wrapper layer and the resource layer. These are mapped
on three physical layers, with a thin-client interface, a set
of existing resources at the lowest tier and the “business
logic” of the integrated application, consisting of the me-
diator and the wrappers, in the middle tier.

Mediator

Resources

Ui Browser

input data
display result

Browser
r

Wrappers

execute:
underlying
applications

[/
WEB [+
application
site

Figure 1: The Mediation Architecture.

uery
rappers

S
interface

The domain and task model required for the integration
of a set of WWW applications are represented explicitly
in XML in the mediator layer. The user interacts with
the mediator through an XML-enabled WWW browser,
such as Internet Explorer. We have developed a general
XSL! stylesheet for presenting task models as hierarchical
menus: the high level tasks of the mediator correspond to
the top level menus whose options become subtasks rep-
resented in sub-menus. This gives the mediator of the
integrated application a simple intuitive interface through
which the user can access and traverse its task structure. To
initiate a session with the mediator, the user must specify
the high-level task desired for the session. In response, the
mediator retrieves the task structure corresponding to the
selected task, i.e., the set of simpler tasks into which the
selected task can be decomposed, and recursively descends
from the high-level task to the subtasks, while exposing the
corresponding menus to the user.

Figure 2 depicts part of the travel mediator’s task
model. The overall task of the mediator is to find airfares

LExtensible Stylesheet Language (XSL) is a language with capabilities
for presentation and manipulation of XML documents [3].

= I |
refine infer display
inputs for derived tickets
resources attributes
S

Figure 2: The travel-planning task structure.

which gets decomposed into the tasks of specifying ticket
attributes, refining the inputs, getting tickets from the un-
derlying applications, inferring derived attributes of the
collected tickets, and displaying these tickets to the user.
There are three different types of tasks in a mediator’s task
structure:

e user-interaction tasks that involve requesting infor-
mation from (or displaying information to) the user.
(subtasks 1 and § - denoted by rectangles with the
bottom-right corner folded)

e internal tasks involving information processing inter-
nal to the mediator (subtasks 2 and 4 - shown as sim-
ple rectangles in the Figure)

e information collection tasks that involve interacting
with the wrappers of the underlying applications to
collect information (subtask 3 - shown as an oval).

2way ticket Forward.FromCode=Reverse. ToCode
r-forward Forward. ToCode=Reverse. FromCode
P-reverse =
1way ticket Leg[i]. ToCode=Leg|i+1].FromCode
L- Legli]. Arrival Time<Leg[i+1).DepartureTime
leg[n] g(i] g[i+1].Dep:
FromCode
ToCode . ToCode=/=FromCode]
rDepartureTime ArrivalTime>Departure Time

FArrivalTime
Flight

Jocation

time

Figure 4: The Domain Model.

Figure 4 shows a part of the travel mediator’s domain
model. The domain model contains three types of informa-
tion

1. the names and attributes of the entities that exist in the
domain,

2. the relationships between these entities, including in-
heritance and composition relationships, and

3. the invariants of these entities.

In the model of Figure 4, a 2way ticket is composed of two
Iway tickers, such that the origin of the first is the desti-
nation of the second and vice versa. Each lway ticket is
described in terms of the airport codes of the origin and
destination cities, FromCode and ToCode correspondingly,
which are both types of locations, the departure DeptTime
and arrival ArrTime times, and a Flight number.

As previously mentioned, some of the mediator’s tasks
involve interaction with the user. These tasks require user
input for (or display to the user of) the values for some of
the domain-model entities. For each entity in the XML do-
main model that must be input by (displayed to) the user,
there exists an associated XSL stylesheet that provides an
interface for the data input (display). When the user selects
a user interaction task from the mediator’s task-structure
menu, the mediator sends to the user’s browser the appro-
priate form. For example, in the case of the travel me-
diator, several different types of locations and fimes must
be input by the user. As it can be seen from the Figure
2, the first subtask of the overall task is to specify ticket
attributes. The selection of origin and destination cities
are subtasks of this task. When, in the process of find-
ing an air fare, the user reaches the task of selecting the
origin and destination, i.e., FromCode and ToCode, of the
travel, the mediator sends to the browser the location entry
form, which is generated by the location XSL stylesheet.
Another user-interaction task is final ticket display: a col-
lection of 2way-tickets is sent back to the user’s browser,
where it is presented as a table sortable by any of the ticket
attributes.

Figure 3 illustrates the user interfaces generated by
the XML domain and task models and their correspond-
ing XSL stylesheets. From right to left, one can see the
task-structure based menu, the location data entry form,
the summary output including problem specification and a
table of the results, and the full ticket listing.

When an internal task is reached, the mediator decom-
poses it further, if necessary, and then invokes an internal
function to process the information. An internal task might
be invoked to infer additional information from the user’s
input or to process the information collected by the wrap-
pers before presenting it to the user. Internal tasks allow
processing of the data using application-specific logic. For
example, after the mediator has collected the user input,
the internal task of refining these inputs is reached. This
task involves the elaboration of the input to meet the level
of detail expected by the wrappers. For example, while
the user may specify the departure time as a date, some

Show Air Tickets

Here is a list of the flights meet your request. You can modify |
the input data by goiug back to step one or select another task
for travel planning,

Tnput Data

prign 0 eiomion 18 A
Raw) e : JON 810 835
B Origin ey <o, CANADIAN 7503 10 £ ARG et
it L. TOL 700 730
Rty e P CANADIAN 6130 YWEYVRYG A au
o oty e [CANADIAN 7870BRITISH yyp “ye e TOL. 900 1135
o e AEROSPACE 146-200 VTR AM M

Aatecodel [T

cirvonie: [

citveode. . T

figs

ipatcode. [

CANADIAN 641BOEING

ENe7 i bge 1) S o0

3

Figure 3: Snapshots of the travel-assistant user interface.

resources require a time-of-day or even hour information;
the mediator can infer these more specific values from the
user’s input.

When an information-collection task is reached, the me-
diator identifies the application that supplies the necessary
information. The mediator sends a request to the corre-
sponding wrapper. For example, when the informarion-
collection task of getting tickets for a specific travel prob-
lem is reached, the travel mediator sends the problem spec-
ification to the wrappers of the travel-planning applications
and requests their solutions. Each wrapper, in turn, calls
the appropriate method of its associated underlying appli-
cation and extracts 2way tickets from the response which
are then returned to the mediator.

3 The Resource Wrapper

Information-collection tasks are initiated by the mediator
and performed by the wrappers of the underlying applica-
tions. A wrapper must deliver two important functionali-
ties:

1. map the problem request to a set of parameters for
a particular method of the resource and invoke this
method, and

2. parse the application’s response to extract the relevant
pieces of information expected as an answer by the
mediator.

Most WWW applications provide information encoded
using HTML. Our wrapper construction process assumes
that the information in the underlying application’s re-
sponse is encoded in well-formed HTML (or possibly con-
verted to well-formed HTML using an application like the

HTML Tidy [4] utility). Presently we cannot automati-
cally create wrappers for information that would normally
require a browser plug-in for presentation (e.g. PDF or
Shockwave). Henceforth, the term “response” (R) will re-
fer to HTML. documents returned by an application in re-
sponse to a request for information (via some HTTP ::
GET/POST({param;}*) method). More specifically,
we are interested in a particular class of wrappers that ex-
tract a set of multiple instances of an entity from the medi-
ator’s canonical domain model.

Each wrapper in this integration architecture contains
the following information:

1. the canonical domain model of the mediator,
2. the URL of the wrapped application,

3. the method of the application that the wrapper in-
vokes, the required parameters for this method and
how to map a problem specification represented in
terms of the domain model in a method call,

4. a domain-model extension that describes, XPATH?
rules characterizing the location of instances of
domain-model entities in the application’s response,

5. a driver component that invokes the method on the
underlying application, and

6. a parser that uses the information above to interpret
the application’s response.

The original domain model is shared by the mediator
and all wrappers. The extension to the model, which is
specific to each wrapper, defines a grammar, that is a set

2XPATH is a language for addressing parts of XML documents [2].

of rules, for appropriately interpreting the application’s re-
sponse to a particular method invocation in terms of the
common domain model. The process of wrapper construc-
tion (described in section 4) involves automatically learn-
ing this domain-model extension.

For each request received from the mediator, a wrapper
completes the following process:

1. it maps the problem specification provided by the me-
diator to the required parameters for the appropriate
resource method,

2. it invokes the method,

3. it extracts the information contained in the re-
sponse according to the XPATH rules specified in the
domain-model extension, and

4. it returns this information to the mediator.

4 Wrapper Construction

The most critical step in the process of developing an in-
tegrated application, such as the travel-planning assistant
described above, is the construction of the existing appli-
cations’ wrappers. This is a “reverse engineering’” process
in nature: its objective is to extract a set of rules for map-
ping the application’s original response to a common target
representation, that is, the domain model.

Many wrapper-construction methods parse HTML doc-
uments using a linear inspection [6]. They attempt to
identify irrelevant parts at the beginning and the end of
the HTML document, and use that information 1o gener-
ate rules for parsing the rest for potentially useful informa-
tion. Dynamically generated documents can be a challenge
for such approaches, since the size, the appearance and the
types of information contained in these irrelevant parts may
change from request to request.

In this work, the hierarchical structure of HTML doc-
uments is traversed to select and inspect their contents.
HTML pages served by WWW applications in response
to a particular request are usually automatically generated.
Although individual responses may differ in content, all
responses from the same application for the same type of
request usually have a similar organization. This implies
that two HTML documents served by an application as
responses to the same type of request are more likely to
have commonalities at (and close to) the documents’ roots
than at (and close to) their leaves. After the HTML doc-
ument has been parsed into a tree representation rooted at
the < html > tag, document subtrees that may contain
information of interest can be efficiently located, using a
DOM-like API [1].

63

Our approach to wrapping WW W applications relies on
the use of XML technology for creating a semantic map of
documents. As we have already mentioned, the mediator’s
domain model is represented in XML. When the media-
tor sends an information collection request to a wrapper, it
expects to receive an XML document containing instances
of some entity in the domain model, henceforth called the
target concept (C;)%. More specifically, this method is de-
signed to deal with applications whaose responses possibly
contain more than one instances of the target concept.

XML documents are hierarchical in nature. An XML
element is composed of simpler XML elements. In order
to extract an instance of the target concept from the ap-
plication’s response, instances of all the target-concept’s
constituents must be identified.

Figure 5 at the top illustrates a hypothetical target con-
cept k that consists of two simpler concepts, d and w,
which in turn get decomposed into a, b, ¢ and z, y, z corre-
spondingly. The set of &’s constituent components consists
of all the concepts represented by the trees rooted at &, d,
w,a,b, ¢ w,y, 2.

Let's assume that there are at least two instances of k
(and consequently two instances of each d, w, a, b, ¢, =, y,
z)in a particular HTML document, produced as a response
of the application to be integrated. If all the parts of one in-
stance of concept k are separated from all the parts of all
other instances of k, i.e., the instances of the constituents of
the different concept instances are not intermingled, then &
is said to be contiguous. So for example the three trees at
the bottom half of Figure 5 represent the internal struc-
ture of three different HTML documents. Each circular
node in the tree represents a pair of matching HTML tags
enclosing a part of the document. The label on the node
corresponds to the entity of the target concept contained in
this part of the document. % is contiguous in the first two
trees in Figure 5. However, in the first tree, it is also en-
capsulated, i.e., there is a distinct pair of HTML tags com-
pletely enclosing all of the parts of one instance and none
of the parts of any other instance. k is not encapsulated in
the second tree, but d and w are. The third tree represents
a case where k is not contiguous, i.e., the component in-
stances of the different concept instances are interspersed
in the HTML page.

In order to extract the instances of k from an HTML
document, rules must be formulated for how to traverse
the tree-structure of the document in order to locate the
instances of the constituents of k. These rules can be for-
mulated using XPATH rules. Therefore, the main objective
of the wrapper construction process is to learn a grammar,

3There can be instances of more than one entities of interest contained
in the response. However, for the. sake of clarity of the discussion we
use the singular number. Our method can also deal with multiple target
concepts.

A tree representation of a target concept defined by the fol-
lowing XML domain
model: <k><d><a> <> <ec></e></d>
WD XSS Yy><ly><z><z><Iw></k>

Figure 5: (top) k is the contiguous and encapsulated, (mid-
dle) k is contiguous, d and w are contiguous and encap-
sulated, (bottom) d and w are contiguous but not encapsu-
lated.

specified as XPATH rules, for the locations of the instances
of the leaf components in the target concept set.

The contiguity and encapsulation properties of the tar-
get concept in the application response have an interesting
effect on the structure of the grammar. If the concept is
encapsulated, then an XPATH rule can be formulated in
order to localize the HTML subtree that spans all the con-
cept constituents. The rules for its constituents can then be
formulated relative to the root of this subtree. If the con-
cept is not encapsulated but it is contiguous, then a set of
indexed XPATH rules can be formulated in order to locate
its constituents®. Finally, if the concept is not contiguous,
then rules for the extraction of its elements must be dis-
covered and then the constraints describing the invariants

4The underlying assumption is that the concept instances have a com-
mon internal structure

64

of the concept may be used to combine them into concept
instances. We discuss in detail the nature of these rules and
the algorithms to learn them in the next subsection.

The overall process for wrapper construction is shown
in Figure 6. It consists of a demonstration phase and a
learning phase. The purpose of the demonstration phase,
which is not completely automated yet, (step ! in Figure
6) is to collect examples, on the basis of which both the
parameters of the method to be invoked on the underly-
ing application and the grammar for parsing its response
can be learned. The input to the demonstration phase is
the specification of a set of problems and their solutions
that the application can accomplish. The underlying idea
is that when integrating a new application, the information-
collection task that its wrapper is expected to accomplish
is already known, and therefore examples of this task can
be specified. The demonstration phase relies on a proxy,
based on the Muffin library [5]. The purpose of the proxy is
to sit between the web server and the user’s browser and to
record the interactions between them, while the user sends
a sequence of requests to the server that accomplish the
functionality of the resource to be wrapped.

1. Let a user demonstrate the use of the resource to be
wrapped and generate the training examples

(a) Define a set of example problems for the user to
demonstrate

(b) For each such problem

While the user at his browser interacts with the
resource server to solve the problem, record the
trace of the interaction and the final response
page that contains the instances of the target con-
cept that are the solution to the current problem.

2. Learn the protocol of the interaction with the resource

3. Learn the grammar for extracting the instances of the
target concept from the resource’s responses

Figure 6: The Overall Process.

The next phase of the wrapper-construction process is
the learning phase (steps 2 and 3 in Figure 6). The ob-
jective of this phase is twofold. First, the mapping of the
problem specification into an appropriate method invoca-
tion to the underlying application server must be learned.
Second, the grammar rules for parsing the response into the
corresponding solution must be formulated. In this paper,
we focus on the second task.

4.1 The Grammar Learning Algorithm

The most challenging task of the learning phase is to learn
the XPATH rules for extracting each component of the tar-
get concept from the response. The algorithm for learning
how to extract instances of an encapsulated concept from
the HTML response of a resource is shown in Figure 7.
Given a set of specific examples of the target concept and
a resource response that is known to contain the given ex-
amples, the learning algorithm generates a set of XPATH
rules that will extract the information for al} instances of
the target concept from resource responses with the same
structure. This section illustrates the given algorithm with
a small example from a fictitious glossary web page.

Suppose that the resource response consisted, in part,
of a glossary containing a list of words and their defini-
tions. Further suppose that the task is to find the rule for
extracting all the entries in the glossary, but none of the ad-
ditional information on the page. Let us examine the pro-
cess required to create a grammar for extracting the word-
definition pairs from this hypothetical example.

In the glossary example, the target concept is the glos-
sary entry and its components are the word and its defini-
tion. Figure 8(a) shows three instances of the target con-
cept that are included in the resource response. These in-
stances are part of the algorithm’s input. Let us assume that
each glossary entry in the HTML response of the resource
is contained in a separate row of a table and the word and
its definition are data fields in the table. Let us further sup-
pose that the word of each entry is red. In the particular
response page, the entries for the words “abbey”, “abduct”
and “capital” are located in the fourth, seventh and eighth
rows of that table.

The first step of the algorithm (steps 1.a and 1.b) is to
use a post-order search-traversal of the response document
tree, to identify the locations of the entries on the page and
to formulate the XPATH rules for these locations. Figure
8(b) shows the rules for the locations of the components
of the three entries in the page. The word “abbey” can be
located by the path “html/body/table[51/tr[4)/td[0]” in the
HTML document tree, the definition of the word, “convert”
can be located by the path “html/body/table[5])/tr[7]/td[1]”,
and the word “capital” can be located by the path
“html/body/table{5})/tr[8)/td[1]", and so on.

Based on the XPATH rules of the locations of its com-
ponents, the rule for the location of the target concept
instance can be formulated (step 1.c). The XPATH rule
for the location of each entry is the minimum spanning
tree containing its word and definition, i.e., the maximum
common prefix of the locations of its constituents. In
this example then, the location of the “abbey”, “abduct”
and “capital” entries are at “html/body/table{S}/tr[4]/”,
“html/body/table[5)/tr[7}/ and “html/body/table[5)/ir[8]/”

65

1. FOR EACH instance, p, of the concept c;

(a) locate the components of the instance

(b) identify the XPATH rule, consisting of the in-
dex and the attribute list, for the location of the
instance components

(c

~—

identify the XPATH rule, consisting of the index
and the attribute list, for the location of the in-
stance as the minimum spanning tree of its com-
ponents locations

(d)

formulate the locations of the instance compo-
nents, relative to the instance location

i. IF the path expression of its parent compo-
nent is the prefix of the current path rule,
remove the prefix from the current hypoth-
esis

ii. IF it is a parent component, generalize the
index of the last tag of the path to include
all

2. FOR EACH index of every rule hypothesis
IF it is constant, remove its associated attribute list

3. IF the set of XPATH rules for the examples vary only
by index number, formulate one of the following (and
increasingly general) hypotheses for the rule zp(c,)

(a) FOR EACH variable index, generalize the ex-
pression to a linear progression of the index val-
ues

(b) FOR EACH variable index, generalize the ex-
pression to include all possible index values

Figure 7. The algorithm for learning grammar rules for
encapsulated concept.

correspondingly. The fourth column of Figure 8(b) shows
the locations of the constituents of each instance relative to
the location of the instance itself, produced by step 1.d of
the algorithm.

At this point, step 1 of the algorithm shown in Figure
7 has been completed. The goal of the next step is to for-
mulate, first, an abstract hypothesis for the location of all
entry instances in the resource response relative to the root
of the document tree, and second, a set of hypotheses for
the locations of the concepts’ constituents, i.e., word and
definition, relative to the locations of the concept instances.

Many of the resources’ servers respond with HTML
pages constructed by scripts collecting data from a
database. These pages are highly regular in structure, and

more often than not, the XPATH rules of the locations of all
the instances are the same with the exception of the indices
for some of the path tags. Thus the generalization step at-
tempts to discover a regularity in the values of the differing
indices. This regularity may be that all values are possible,
or that the possible index values form a linear progression
(step 3).

<dictionary>
<entry>
<word>abbey </word>
<definition>convent</definition>
</entry>
<entry>
<word>abduct</word>
<definition>kidnap</definition>
<lentry>
<entry>
<word>capital</word >
< definition>money </definition>
</entry>
</dictionary >

(a) An XML document with two sample instances of glos-
sary entries.

Example 1

Entry: /html/body/table[5)/tr[4]/

Word: abbey /html/body/table[S)/tr{4)/td[0] td[O]
Definition: convent/html/body/table[5)/tr[4)/td[1] td[1]
Example 2

Entry: /html/body/table[5)/tr[7)/

Word: abduct /html/body/table[SV/tr[7)/td[0]) td[0]
Definition: kidnap /html/body/table[S)/tr[7)/td[1] td[1]
Example 3

Entry: /html/body/tabie[S5}/tr[8)/

Word: capital /html/body/table[5)/tr[8)/td[0] td[0]

Definition: money /html/body/table[5)/tr(8)/td[1] td[1]

(b) The XPATH rules for the locations of the two glossary
entries in the response.

Entry: /html/body/table{5]/tr
Word: td[0]
Definition: td[1]

(c) The generalized XPATH rules for the location of the
glossary entries.

Figure 8: A grammar-learning example.

From the XPATH rules for the location of the entry in-
stances, shown in Figure 8(b), the learning algorithm can
determine that the target concept (a glossary entry) is found
consistently in rows of the fifth table of the document. The

66

generalized XPATH rule for the location of all the glossary
entries is “/html/body/table[5)/tr”, i.e., the index of the row
has been generalized to allow any value. Because this is a
quite aggressive generalization step, the attributes of pre-
sentation of each entry, i.e., the color red, are kept as part
of the XPATH rule for its location.

The same generalization process applies to the XPATH
rules of the relative locations of the sub-components of the
entry. In this example, the word and definition of each en-
try can be found in the first and the second cells of the en-
try row. The subcomponents locations then are “td[0]” and
“td[1]”. The final rule for extracting the instances of the
entry concept in the resource response is shown in Figure
8(c).

If the “capital” instance were located in the tenth
row instead, the algorithm would have chosen to
generalize the expression for the entry location to
“/htmV/body/table[S)/tr[4+3*i},1=0,1,.”” instead.

If the target concept is not encapsulated, step 1.c of the
algorithm will return the XPATH rules for extracting the
constituents of the target concept instead of the target con-
ceptitself. The generic wrapper component of the architec-
ture is capable of using these fragments of the target con-
cept and the invariants of the target concept as defined in
the domain model to combine the fragments into instances
of the target concept. This way, if sufficient invariants are
defined for the target concept, it can be extracted even if it
is not encapsulated in the response of the application to be
wrapped.

5 Evaluation

The representation language for specifying the wrappers
is quite general, in fact we have constructed wrappers by
hand that conform to the same representation and behave
similarly at run-time as the learned ones.

The grammar-learning algorithm has been evaluated us-
ing both generated test data and actual HTML pages from
travel-planning web applications. The generated test data
consisted of encapsulated, contiguous target concepts in a
variety of HTML structures (i.e. lists, tables, paragraphs).
The algorithm was able to successfuily learn the gram-
mar when given one exhaustive annotated example. The
learned grammar was then used to extract all instances of
the encapsulated concept from the generated pages.

The algorithm was also used to wrap two popular travel
planning web sites: www.expedia.com and www.itn.com.
The target concept was encapsulated in the first and con-
tiguous but non encapsulated in the second. We encoun-
tered an interesting probiem in the effort to wrap these
sites. Although all elementary (leaf) entities of the target
concept existed in the applications’ responses some of the
intermediate constituents were not encapsulated. For ex-

ample, in Expedia the ticket concept is encapsulated but
the forward and reverse legs are not. This means that the
forward and reverse legs are not delimited by HTML tags
in the applications response. In fact, the ticket consists sim-
ply of a set of hops, some of which constitute the forward
leg and some the reverse. In this case, the algorithm fails
to identify the XPATH rules for the forward and reverse
legs. This problem is basically due to a mismatch between
the structure of the concept in the domain model and the
underlying database schema in the application: the first as-
sumes a more complex structure than the second. At this
point, to address this problem, we present to the algorithm
the examples of the target concept assuming different vari-
ants of the canonical domain model. As soon as the ex-
amples of one variant are identified, the grammar for this
variant is produced. Instances of this variant are reformu-
lated into the canonical structure using the concept invari-
ants. We are currently investigating the possibility of con-
structing the various variants of the domain model, and the
corresponding restructuring of the input examples, auto-
matically. A further complication occurs when the concept
is not encapsulated in the application’s response, as is the
case of ITN. In this case, the algorithm fails to identify the
examples of all concept variants. It then hypothesizes that
the concept is not encapsulated and attempts to identify in-
stances of its constituents, starting from the more complex
towards the simpler ones. Again, once a grammar has been
formulated, it can be used to produce a wrapper for this ap-
plication that will construct instances of the target concept,
as defined in the canonical model, based on the invariants
of this concept.

The algorithm also faces problems if the HTML re-
sponse of the application has more than one constituents
of the target concept in the same HTML node, such as ori-
gin and destination of leg for example. An extension is
needed to be able to further specialize the learned XPATH
rules with expressions of string delimiters in addition to
HTML tags. The wrapper-construction algorithm is still
limited in that it does not address the problem of learn-
ing non-contiguous concepts. We are currently working on
extending it in this dimension and we believe that the in-
variants of the domain model will be extremely useful in
this case.

In summary, the algorithm is useful but still quite brittle
and limited. As the complexity of the concepts to be ex-
tracted from the applications responses increases and the
structure of the response HTML document becomes more
flat, the algorithm becomes less effective. This is not sur-
prising, since it corresponds to requiring the extraction of
more information from less. We believe however that the
approach exemplified by this algorithm is promising, since
to our knowledge related research until now has focused

67

mostly on simpler concepts.
However, the most challenging problem we have en-
countered in the process of integrating WWW applica-

- tions is the fact that the different based applications change

the structure of their responses quite often. Today we rec-
ognize that the underlying wrapped application has been
changed when the resources wrappers fail at run-time. A
more robust technique is needed to recognize when the
wrapper must be updated and possibly automatically pro-
ceed to the learning process at run time.

6 Background and Related Work

Recently there have been several efforts to extract specific
information from data available on the WWW. W4F []2]
and XWrap (11] are tools that provide a “wizard” like in-
terface for users to define and test extraction rules. Once
the user is satisfied that the rules defined extract the ele-
ments of interest from a web page, then they create a java
class defining the rules as a wrapper that can collect the ex-
tracted data and place it in a XML document. W4F requires
the user to define the rules for both extracting the data from
the HTML document and mapping the extracted data to an
XML document. It uses its own languages, HEL(HTML
extraction language) and NSL(nested string language), for
describing the extraction rules and storing the extracted
data, respectively. While XWrap provides a more auto-
matic “wizard” which generates the extraction rules by al-
lowing the user identify the key words and the presentation
layout structure. It embeds the extraction rules in an XML
document. XWrap extracts data from only three types of
regions from the HTML document, table, list and para-
graph. '

Artificial-intelligence approaches have focused on
learning wrappers automatically. Kushmerick [10] catego-
rized wrappers into six different classes of complexity and
described inductive learning algorithms for the construc-
tion of wrappers of each type, where instances correspond
to pages, labels correspond to the pages’ content, and hy-
potheses correspond to wrappers. WebKB ([8] developed
a model-based method for extracting data spanning across
several web pages while describing rules in first-order rep-
resentation.

Finally, Ariadne [6] exemplifies research in the second
category. This project has focused on developing an in-
frastructure for integrating the wrapped resources of semi-
structured documents using a planner. The MIX project
[7] also belongs in this category. MIX takes a database-
centric approach to integration and develops a query plan-
ning mechanism for querying various resources, including
databases, GIS systems and Web sites, viewed as XML
databases. Both Ariadne and MIX, also offer support in
the construction of wrappers. Ariadne describes semi-

structured document in embedded catalog formalism and
extraction rules as finite automata, while MIX employs
XML for information modeling.

7 Summary and Conclusions

Incompatible interaction models and differences in the in-
formation semantics prevent users from combining the ser-
vices of different web sites. Although these incompatibil-
ities may be intentional in some cases, to prevent service
comparison, WWW users are provided with more func-
tionality if related applications could be reengineered to
interoperate to a degree. We have presented an approach to
WWW information integration, based on the development
of a canonical domain model in XML and the wrapping
of existing WWW applications with wrappers capable of
communicating about entities in this common model with
the applications and with an intermediary mediator.

The most interesting features of this approach are the
following:

e All internal representations (task model, domain
model, grammar) are represented in XML. These rep-
resentations enable the lightweight construction of
simple and consistent user interfaces. Furthermore,
in combination with standard XML-related languages
and APIs (XSL, DOM and XPATH) they provide the
basis for the construction of wrappers and the com-
munication between the mediator and these wrappers
at run time.

e The basis of the integration is the domain and task
models of the overall application. The domain model
explicitly represents the agreed upon domain entities
and their semantics and the task mode! represents the
control of information exchange and interaction be-
tween the user and the underlying applications.

e The wrapper-construction process takes advantage
of the hierarchical structure of the HTML docu-
ment to generate rules for extracting multiple in-
stances of complex domain entities interspersed
among “garbage” HTML content, without requiring
special landmark tags.

Finally, the wrapper-construction process uses the ex-
plicit representation of the invariants of the domain-
model entities to extract complex concepts whose
constituents are not encapsulated in the HTML doc-
uments produced by the wrapped applications.

Acknowledgements

This work was supported by a research grant by NSERC
203221-98.

68

References

{11 Document Object Model (DOM) Level 2 Specifi-
cation http://www.w3.0org/TR/1999/CR-DOM-Level-
2-19991210/

[2] XML Path Language (XPath) Ver-
sion 1.0, W3C Recommendation 16 November 1999
http://www.w3.org/TR/xpath

[3] Extensible
Stylesheet Language (XSL) Version 1.0 W3C Work-
ing Draft 27 March 2000 http://www.w3.org/TR/xpath

[4] htip//www.w3.org/People/Raggett/tidy/

{51 Muffin, World Wide Web filtering system,
http : [/muf fin.doit.org/

[6] J.L. Ambite, C. A. Knoblock. Flexible and Scalable

Query Planning in Distributed and Heterogeneous En-

vironments Proceedings of the Fourth International

Conference on Artificial Intelligence Planning Sys-

tems, Pittsburgh, PA, 1998

C. Baru. Xviews: XML Views of Relational Schemas,

Inti. Workshop on Internet Data Management Flo-

rence, ltaly, Sept.1-4, 1999.

M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T.

Mitchell, K. Nigam and S. Slattery. Learning to Ex-

tract Symbolic Knowledge from the World Wide Web.

Proceedings of the Fifteenth National Conference on

Artificial Intelligence, Madison, W1, 1998.

C.A. Knoblock, S. Minton, J.L. Ambite, N. Ashish,

P.J. Modi, I. Muslea, A. G. Philpot, S. Tejada. Model-

ing Web Sources for Information Integration, Proceed-

ings of the Fifteenth National Conference on Artificial

Intelligence, Madison, WI, 1998.

[10] N. Kushmerick: Wrapper induction: Efficiency and
expressiveness. To appear, J. Artificial Intelligence,
2000.

[11] L. Liu, C. Pu, W. Han, D. Buttler, W. Tang. An XML.-
based Wrapper Generator for Web Information Extrac-
tion, To appear in the Proceedings of the ACM SIG-
MOD International Conference, June 1-4, Philadel-
phia.

[12] A. Sahuguet, F. Azavant. Looking at the Web through
XML glasses. Coopls’99 (1999)

{7]

(8]

(9]

