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Abstract

We show that when returnsareiid, the Sharperatio calculated over a T-period holding horizon will first riseand
then fall as T increases, ingead of a monotonic function of T if one ignores the compounding effect in
calculating long-term returns. Specifically, we show that ignoring the compounding term will yield a biased
estimate of Sharpe ratio, and the bias enlarges when a long investment horizon is considered. To calculate
long-horizon Sharperatios, we propose the use of block resampling to retain the serial dependency in the data.
Based on a sample of size portfolios, we find that rankings based on Sharperatios of different holding horizons
will differ when the compounding effect and the time-series dependency in the data are both considered.
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1. Introduction

The Sharpe ratio has been extensvely used to evaluate portfolio performance. While Tobin (1965)
pioneered the work on the effect of heterogeneous investment horizon on portfolio choices, Levy (1972) was
the first to show that the Sharperatio tendsto change with different investment horizons. He shows that aslong
as the intended investment horizon is different from the horizon used to compute the ratio, the Sharpe ratio
exhibits systematic biases and any asset-allocation decisions based on the Sharpe ratio will be misleading.
Thereafter, several sudies, theoretical or empirical, have identified the horizon asan important factor affecting
the performance measures (Chen and Lee (1981), Levy (1981), Levy (1984), Chen and Lee (1986), Levy and
Samuel son (1992), and Gunthorpe and Levy (1994)).

A potential problem with the previous studiesis that most have been done by assuming that the returns of
the underlying portfolios are independently and identically distributed (iid). A recent work by Lo (2002) is
perhaps the only exception that derives the sampling distribution for Sharpe ratio of different investment
horizons while dlowing returns to be non-iid. For derivationa convenience, Lo (2002) approximates the
long-horizon return as the arithmetic sum of single-period returns and ignores the effects of compounding.
However, asit iswell known that the approximation deteriorates asthe returns become volatile (see, e.g., Bodie,
Kane and Marcus (2002), p. 809), which appearsto be the case for longer investment horizons, Lo’'s measures
should be used with caution. We show that the Sharpe ratio, when expressed as the function of the investment
horizon, will exhibit an anti-U shape, whereasit will be monotonically increasing in the length of the horizon if
the compounding term isignored.

Hodges, Taylor and Yoder (1997) point out that the ranking based on Sharpe ratios calculated over
short-term (monthly, quarterly, and annual) returns may not be valid for long-term investors. The intuition is
that if the asset returns arerealy generated from an iid process, which implies that the investment opportunity
set remains unchanged over time, thelength of the horizon should not matter. On the other hand, the investment
horizon matters when the asset returns are serially correlated. Asaresult, they propose the use of smulation to
calculate long-horizon Sharperratios.

Hodges, Taylor and Yoder (1997), however, generate the T-hol ding-period returns by randomly sampling T
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returns out of historical returns with replacement (i.e., independently resampling the individual returns). The
procedure breaks the time-series dependency of the underlying series and generates independent returns.

Since it iswell documented that asset prices do not follow random walks and asset returns are to some
extent predictabl e, independent resampling may not be appropriate. Specifically, it will overestimate the Sharpe
ratio in the case of positively seria correlation, and underestimate the Sharpe ratio in the case of negatively
seria correlation. To avoid the problem, we propose the use of block sampling to compute long-horizon Sharpe
ratios that allow for capturing the serial dependency in the data.

We present the evidence by using the following procedure. First, based on a sample of three size portfolios
we show that portfolio returns are serially correlated. This implies that the rankings of the Sharpe ratio with
different correlated patterns will differ over different holding periods. While, the rankings of the Sharpe ratio
will remain unchanged if independent resampling were used. Thus, we advocate using block resampling to
calculate the Sharpe ratio rather than using independent resampling. Once the seria correlation is taken into
account, the optima portfolio changes from large-sized portfolio to medium-sized portfolios when the
investment horizon islengthened.

This paper is organized as follows. Section 2 shows that the Sharpe ratio is not independent of the
investment horizon even under theiid assumption. Section 3introduces data and compares the empirical results
from randomly sampling individual observations with those from randomly sampling block data. The final
section makes a conclusion.

2. Investment horizons and performance measure

In this section, we show that when returns are iid, the Sharpe ratio calculated over a T-period holding
horizon will firgt rise and then fall as T increases, instead of amonatonic function of T, as suggested in Lo (2002)
which ignores the compounding effect in cal culating long-term returns. Specifically, we show that ignoring the
compounding term will yield abiased estimate of Sharperatio, and the biaswill enlarge when along investment
horizon is considered.

To begin, definethe T-period return, R(t,t+T), of a security as follows:
R(t,t+T):M, (1)
P
where P, isthe price of one security. It isthe multiplicity of single period Smplereturns. That is:
R(t,t+T) =1, @+ Rt +i-Lt+i))-1, 2

If P, follows a geometric Brownian motion such that R; hasan iid normal distribution with mean /. and variance
o, R(t,t+T) has the following expected value and variance (see Jobson and Kotz (1972)):

E(R(L,t+T)) =™ /2 1, ©)

Var (R(t,t +T)) = 77" To™D), (4)

As a result, the mean and variance of T-period return are not linearly proportional to T. Define the Sharpe
measure of over a T-period investment horizon asthe following:

E(R(t,t+T))-R, (t,t+T)
JVar (R(t,t+T))

where Ry(t,t+T) isthe T-period risk-free return. Under iid normality distribution, the T-period Sharpe measure
has the following expression:

Sharpe(T) =

Tu+To?/2 Tre
e’ -e

— ©)
eT(/I+O' 12) eTo‘ -1

Figure 1 shows that the Sharperatio, expressed asafunction of theinvestment horizon T, will first riseand then
fall as the length of the horizon increases.

Sharpe(T) =

! The Sharpe ratio of T-period simple return computed by Hodges, Taylor and Yoder (1997) with randomly resampling
individual return ns also rises first and then decreases.
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For derivational convenience, Lo (2002) approximates the long-horizon return as the arithmetic sum of
single-period simple returns and ignores the effects of compounding. i.e
R(t,t+T)=3 R(t+i-Lt+i))
When returns are iid and one ignores the compounding effect, Lo (2002) show that the T-period Sharpe ratio
will be monotonically increasing in T. Specifically, the T-period Sharpe ratio satisfies the simple relationship
(see, eg., Lo (2002), equation 17):

Sharpe(T)= /T Sharpe(1).
Thus, ignoring the compounding term may yield biased estimate of Sharperatio even under iid returns, and the
bias will enlarge especially when along horizon is considered.

When returns are not iid, the story will be even more complicated. Lo (2002) shows that the variance of a
T-period return can be expressed as.

Var (R(t,t +T)) = o*(T + 2§(T —-K)pi),

where p = Cov(R,R./Var(R) is the kth-order autocorrdation of r. Again, the expression ignores the
compounding term because a tractable analytical expression does not exist if the compounding term is
considered. This meansthat the variance of a T-period return reflects the autocorrelation of the returns up to the
order of T-1. Variance ratio has been used to summarize the time-series pattern of the underlying series:

VR(T) = Var (R(t,t +T))
T -Var(R(t,t +1))

When plotted again the holding horizon T, the variance ratio will exhibit an upward trend if returns are
positively serially correlated, and a downward trend if negatively serially correlated.

Asitiswell known that stock returnsare not serially uncorrelated, the Sharpe measure will not be constant
as the holding periods change. Specifically, if asset returns are positively seridly corrdated, then a longer
investment horizon correspondsto arelatively higher risk level and asmall Sharpe measure. Since independent
resampling breaksthe time-series pattern and generates independent returns, we shall use block samplingin the
next section to capture the time-series dependency in the data and retains the compounding effect in calculating
long-term returns. The smulation detail s are also discussed in next section.

3. Methodology and Results

To explore the relationship between Sharpe performance and the investment horizon, we calculate the
ratios for three size portfolios from the CRSP database for investment horizonsranging from oneto twenty-five
years. The anal-, medium-, and large-sized portfolios of annual returns are downloaded from Kenneth
French’'s web site.? The construction of the three portfoliosis as follows. All stocks listed on the NY SE, Amex
and Nasdaq are firg divided into three categories. The stocks with market equity within bottom 30% are
assigned to the small-sized portfolio; the stocks with market equity within middle 40% are assigned to the
medium-sized portfolio; the stocks with market equity within top 30% are assigned to the large-sized portfolio.
The portfolios are constructed at the end of each June using the June market equity. The portfolios for July of
year t to June of t+1 include all gocks for which market equity data are available for June of year t. Treasury
billsrateisused as proxy for therisk-free rate of interest. The sample coversthe period from 1927 to 2001.

We first use variance ratios to examine if the portfolio returns exhibit any serial dependency. We then
evaluate the average performance of these three types of portfolios over various investment horizons. If the
returns are iid, the variance of the T-period return should be equal to T times the variance of the one-period
return, and the variance ratio should be equal to onefor all horizons. If returnsare positively serially correlated,
then the variance ratio will grow at an increasing rate as the return interval increases, in which case a shorter
investment horizon impliesarelatively lower risk level and ahigher Sharpe measure. On the contrary, if returns
are negatively serialy correlated, then variance ratio will decline as the return interval increases, and imply a
relatively lower risk level for alonger investment horizon.

Figure 2 shows that, with the lengthening of the holding period, the variance ratios rise first, then decline,

2 Theweb siteis: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
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and eventually increase for al portfolios. Specifically, for the small-sized portfolio the variance ratio reaches
the top on the third year, declines afterwards, and revertsto an upward trend for horizonslonger than ten years.
This suggests that returns on the small-sized portfolio are positively autocorrelated in the short term, but the
trend is reversed afterwards. For medium- and large-sized portfolios, the variance ratios also have the same
pattern as the small-size portfolios. The result confirms the literature that smaller-sized portfolios are riskier
than large-sized portfolio in the short term. Surprisingly, however, the result in Figure 2 indicates that
large-sized portfolio may become riskier for investment horizonslonger than ten years because of the stronger
positive higher-order autocorrelations. Sincereturnsare serial correlated, it isnot surprising that the ranking of
the Sharpe measures of an asset will differ when data of different intervalsare used. Theresultsin Figure2 also
indicate that when investment horizons are lengthened long enough (e.g., seven years for large portfolios and
ten years for medium and small portfolios), long-term investment does bear relatively lower risk. This confirms
the conventional wisdom that the risk in the long-term investment is relatively lower, and suggests that the
marketss overreact and depict mean-reverting phenomenon (e.g., Famaand French, 1988; Poterba and Summers,
1988).

To compute the Sharpe ratios for various lengths of horizon, smulation is used here to generate sample
return distributions for portfolios of small, medium, and large stocks for holding periods from one year to
twenty-five years. For comparison purposes, we calculate the Sharpe ratios based on block sampling and
independent sampling as well.

Figure 3 plots the Sharperatios for the three portfolios based on independent sampling. Specifically, for a
given holding period, say T, we generate a sample of T-period returnsfor each portfolio by randomly selecting
T historical annual returns with replacement and compute the compounded return. For example, consider the
case of the small-stock portfolio with a three-year investment horizon. Three annua returns are selected at
random from the historical returns over the 1927-2001 period, and then athree-year holding period return is
computed using equation (3). This process is then repeated 5,000 times, yielding a sample of 5,000 portfolio
returnsfor each holding period. Then, the T-period Sharperatio can be cal culated based on the sample estimates
of mean and variance of theartificial sample. Sincereturns are generated independently, the time-series pattern
embedded in the original seriesis broken down, and the procedure generates independent returns. Indeed, from
Figure 3it can be seen that the shapes of the varianceratios are similar to the one plotted in Figure 1. Thisisnot
surprising because independent sampling eliminates all serial dependency in the data. Another interesting
finding in Figure 3 is that the ranking of the portfolios remains the same through all horizons. Thisis also
expected for the same reason. Clearly, such a result is entirely driven by the independent nature of the
simulation.

To avoid the above problem (independent resampling breaks the time-series pattern and generates
independent returns), we redo the analysis based on block sampling to capture the dependency in the data.
Specifically, for ak-period holding horizon, we first randomly pick ayear, say g, between 1927 and (2001-k+1)
with each year being selected with equal probability, and then pick R(g,g+k-1) as a k-period holding return.
Thisretains the time-series property within the return. Then we repeat the procedure 5,000 times and compute
the excess mean and standard deviation of the 5,000 returns. Dividing the excess mean by standard deviation,
we get the Sharperatio.”

Figure 4 presents theresult based on block sampling. Unlike the finding from independent resampling, the
result in Figure 4 indicates that with block resampling the length of the investment horizon becomes relevant.
Moreover, with block data, the Sharpe ratio for each portfolio aso first increases and then decreases as the
holding period is extended. For example, the Sharperatio for small-sized portfolio (medium, large) goes up the
peak at the horizon of about ten (ten, nine) years, and then decreases gradual ly afterwards. Although the Sharpe
ratios still retain an anti-U shape as in Figure 3, the ranking of portfolios performance changes as the
investment horizon lengthens. For example, the large-sized portfolio performs the best when investment
horizon isless than four years, yet becomes dominated by the medium-sized portfolios when holding periods
are lengthened to five years or more.” Thisindicates that the Sharpe performance measure computed based on

3 Oneimplication is that funds with different time-series properties of investment strategies (e.g., momentum or mean
reversion) cannot be eval uated based on the same investment horizon.

* Here we follow the literature on variance ratio (e.g., Lo and MacKinlay (1988)) that uses overlapping datato improve the
performance of statistics in finite-samples.

® Hodges, Taylor and Yoder (1997) find that large common stocks consistently outperform small stocks when returns are
sampled independently.
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independent resampling is inappropriate when returns are serially correlated. If asset returns are serially
correlated and we estimated the return volatility using independent sampling, we may obtain incorrect ranking
in performance, and make wrong asset all ocation decision. Besides, recall that the medium-sized portfolio has
the lowest variance ratio and the highest Sharperatio for longer holding periods. Therefore, the medium-sized
portfolio appears to be more attractive for long-term investment.

Figurel: The Sharpe Ratio of Simple Return and Investment Horizon under Normal
Distribution (Take Mean=0.01 and Standard Deviation=0.25 for Example)
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4. Conclusions

In this paper, we propose the use of block resampling to obtain proper estimates of Sharperatio for various
investment horizons. Using block resampling retains the compounding effect in calculating long-term returns
and the time-series dependency in the data. We find that rankings based on the Sharperatio vary substantially
with theinvestment horizon. In contrast, investment horizons are irrd evant when the estimation of Sharperatio
is based on independent sampling.

Because investors differ in their risk attitudes and in holding horizons, it is unreasonable to evaluate
portfolio performance based on one single investment horizon. Practical implementation of the Sharperatiois
reasonable only if the intended investment horizon equal s to the holding period of the returns used to compute
the ratio. However, many investment companies report Sharpe ratio only based on the returns for a fixed
investment horizon (e.g., monthly or annual returns). A graph of Sharpe ratio againg the investment horizon
may be more appropriate for investors with multiyear investment horizons. The Sharpe performance rankings
based on short return will be valid only for short-term investors, but not for long-term investors.
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